Temporarily remove unused files; make package work with Cbc

This commit is contained in:
2020-01-22 12:35:18 -06:00
parent ef14f42d01
commit f538356bf6
12 changed files with 189 additions and 192 deletions

View File

@@ -2,77 +2,81 @@
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from .warmstart import *
# from .warmstart import WarmStartPredictor
from .transformers import PerVariableTransformer
from .warmstart import WarmStartPredictor
import pyomo.environ as pe
import numpy as np
from math import isfinite
class LearningSolver:
"""
Mixed-Integer Linear Programming (MIP) solver that extracts information from previous runs,
using Machine Learning methods, to accelerate the solution of new (yet unseen) instances.
"""
def __init__(self,
threads = 4,
ws_predictor = None):
self.parent_solver = pe.SolverFactory('cplex_persistent')
threads=4,
parent_solver=pe.SolverFactory('cbc')):
self.parent_solver = parent_solver
self.parent_solver.options["threads"] = threads
self.train_x = None
self.train_y = None
self.ws_predictor = ws_predictor
def solve(self,
instance,
tee=False,
learn=True):
self.x_train = {}
self.y_train = {}
self.ws_predictors = {}
def solve(self, instance, tee=False):
# Convert instance into concrete model
model = instance.to_model()
self.parent_solver.set_instance(model)
self.cplex = self.parent_solver._solver_model
x = self._get_features(instance)
if self.ws_predictor is not None:
self.cplex.MIP_starts.delete()
ws = self.ws_predictor.predict(x)
if ws is not None:
_add_warm_start(self.cplex, ws)
self.parent_solver.solve(tee=tee)
solution = np.array(self.cplex.solution.get_values())
y = np.transpose(np.vstack((solution, 1 - solution)))
self._update_training_set(x, y)
return y
def transform(self, instance):
model = instance.to_model()
self.parent_solver.set_instance(model)
self.cplex = self.parent_solver._solver_model
return self._get_features(instance)
def predict(self, instance):
pass
# Split decision variables according to their category
transformer = PerVariableTransformer()
var_split = transformer.split_variables(instance, model)
def _update_training_set(self, x, y):
if self.train_x is None:
self.train_x = x
self.train_y = y
else:
self.train_x = np.vstack((self.train_x, x))
self.train_y = np.vstack((self.train_y, y))
def fit(self):
if self.ws_predictor is not None:
self.ws_predictor.fit(self.train_x, self.train_y)
# Build x_test and update x_train
x_test = {}
for category in var_split.keys():
var_index_pairs = var_split[category]
x = transformer.transform_instance(instance, var_index_pairs)
x_test[category] = x
if category not in self.x_train.keys():
self.x_train[category] = x
else:
self.x_train[category] = np.vstack([self.x_train[category], x])
def _add_warm_start(cplex, ws):
assert isinstance(ws, np.ndarray)
assert ws.shape == (cplex.variables.get_num(),)
indices, values = [], []
for k in range(len(ws)):
if isfinite(ws[k]):
indices += [k]
values += [ws[k]]
print("Adding warm start with %d values" % len(indices))
cplex.MIP_starts.add([indices, values], cplex.MIP_starts.effort_level.solve_MIP)
# Predict warm start
for category in var_split.keys():
if category in self.ws_predictors.keys():
var_index_pairs = var_split[category]
ws = self.ws_predictors[category].predict(x_test[category])
assert ws.shape == (len(var_index_pairs), 2)
for i in range(len(var_index_pairs)):
var, index = var_index_pairs[i]
if ws[i,0] == 1:
var[index].value = 1
elif ws[i,1] == 1:
var[index].value = 0
# Solve MILP
self.parent_solver.solve(model, tee=tee, warmstart=True)
# Update y_train
for category in var_split.keys():
var_index_pairs = var_split[category]
y = transformer.transform_solution(var_index_pairs)
if category not in self.y_train.keys():
self.y_train[category] = y
else:
self.y_train[category] = np.vstack([self.y_train[category], y])
def fit(self, x_train_dict=None, y_train_dict=None):
if x_train_dict is None:
x_train_dict = self.x_train
y_train_dict = self.y_train
for category in x_train_dict.keys():
x_train = x_train_dict[category]
y_train = y_train_dict[category]
self.ws_predictors[category] = WarmStartPredictor()
self.ws_predictors[category].fit(x_train, y_train)
def _solve(self, tee):
self.parent_solver.solve(tee=tee)