mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Temporarily remove unused files; make package work with Cbc
This commit is contained in:
16
miplearn/tests/test_solver.py
Normal file
16
miplearn/tests/test_solver.py
Normal file
@@ -0,0 +1,16 @@
|
||||
# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
|
||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
from miplearn import LearningSolver
|
||||
from miplearn.problems.knapsack import KnapsackInstance2
|
||||
|
||||
|
||||
def test_solver():
|
||||
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
|
||||
prices=[505., 352., 458., 220.],
|
||||
capacity=67.)
|
||||
solver = LearningSolver()
|
||||
solver.solve(instance)
|
||||
solver.fit()
|
||||
solver.solve(instance)
|
||||
@@ -2,19 +2,22 @@
|
||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
from miplearn import Instance, LearningSolver
|
||||
from miplearn.transformers import PerVariableTransformer
|
||||
from miplearn.problems.knapsack import KnapsackInstance, KnapsackInstance2
|
||||
import numpy as np
|
||||
import pyomo.environ as pe
|
||||
|
||||
|
||||
def test_transform():
|
||||
transformer = PerVariableTransformer()
|
||||
instance = KnapsackInstance(weights=[23., 26., 20., 18.],
|
||||
prices=[505., 352., 458., 220.],
|
||||
capacity=67.)
|
||||
model = instance.to_model()
|
||||
|
||||
solver = pe.SolverFactory('cbc')
|
||||
solver.options["threads"] = 1
|
||||
solver.solve(model)
|
||||
|
||||
var_split = transformer.split_variables(instance, model)
|
||||
var_split_expected = {
|
||||
"default": [
|
||||
@@ -26,7 +29,7 @@ def test_transform():
|
||||
}
|
||||
assert var_split == var_split_expected
|
||||
var_index_pairs = [(model.x, i) for i in range(4)]
|
||||
|
||||
|
||||
x_actual = transformer.transform_instance(instance, var_index_pairs)
|
||||
x_expected = np.array([
|
||||
[67., 21.75, 23., 505.],
|
||||
@@ -34,24 +37,29 @@ def test_transform():
|
||||
[67., 21.75, 20., 458.],
|
||||
[67., 21.75, 18., 220.],
|
||||
])
|
||||
assert x_expected.tolist() == x_actual.tolist()
|
||||
|
||||
solver = pe.SolverFactory('cplex')
|
||||
solver.options["threads"] = 1
|
||||
assert x_expected.tolist() == np.round(x_actual, decimals=2).tolist()
|
||||
|
||||
solver.solve(model)
|
||||
|
||||
y_actual = transformer.transform_solution(var_index_pairs)
|
||||
y_expected = np.array([1., 0., 1., 1.])
|
||||
y_expected = np.array([
|
||||
[0., 1.],
|
||||
[1., 0.],
|
||||
[0., 1.],
|
||||
[0., 1.],
|
||||
])
|
||||
assert y_actual.tolist() == y_expected.tolist()
|
||||
|
||||
|
||||
|
||||
|
||||
def test_transform_with_categories():
|
||||
transformer = PerVariableTransformer()
|
||||
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
|
||||
prices=[505., 352., 458., 220.],
|
||||
capacity=67.)
|
||||
model = instance.to_model()
|
||||
|
||||
solver = pe.SolverFactory('cbc')
|
||||
solver.options["threads"] = 1
|
||||
solver.solve(model)
|
||||
|
||||
var_split = transformer.split_variables(instance, model)
|
||||
var_split_expected = {
|
||||
0: [(model.x, 0)],
|
||||
@@ -63,13 +71,13 @@ def test_transform_with_categories():
|
||||
|
||||
var_index_pairs = var_split[0]
|
||||
x_actual = transformer.transform_instance(instance, var_index_pairs)
|
||||
x_expected = np.array([[23., 26., 20., 18., 505., 352., 458., 220.]])
|
||||
assert x_expected.tolist() == x_actual.tolist()
|
||||
x_expected = np.array([
|
||||
[23., 26., 20., 18., 505., 352., 458., 220.]
|
||||
])
|
||||
assert x_expected.tolist() == np.round(x_actual, decimals=2).tolist()
|
||||
|
||||
solver = pe.SolverFactory('cplex')
|
||||
solver.options["threads"] = 1
|
||||
solver.solve(model)
|
||||
|
||||
|
||||
y_actual = transformer.transform_solution(var_index_pairs)
|
||||
y_expected = np.array([1.])
|
||||
assert y_actual.tolist() == y_expected.tolist()
|
||||
y_expected = np.array([[0., 1.]])
|
||||
assert y_actual.tolist() == y_expected.tolist()
|
||||
|
||||
Reference in New Issue
Block a user