mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Add types to stab.py
This commit is contained in:
@@ -1,25 +1,27 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
from typing import List
|
||||
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
import pyomo.environ as pe
|
||||
from networkx import Graph
|
||||
from overrides import overrides
|
||||
from scipy.stats import uniform, randint
|
||||
from scipy.stats.distributions import rv_frozen
|
||||
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.types import VariableName, Category
|
||||
|
||||
|
||||
class ChallengeA:
|
||||
def __init__(
|
||||
self,
|
||||
seed=42,
|
||||
n_training_instances=500,
|
||||
n_test_instances=50,
|
||||
):
|
||||
|
||||
seed: int = 42,
|
||||
n_training_instances: int = 500,
|
||||
n_test_instances: int = 50,
|
||||
) -> None:
|
||||
np.random.seed(seed)
|
||||
self.generator = MaxWeightStableSetGenerator(
|
||||
w=uniform(loc=100.0, scale=50.0),
|
||||
@@ -35,24 +37,76 @@ class ChallengeA:
|
||||
self.test_instances = self.generator.generate(n_test_instances)
|
||||
|
||||
|
||||
class MaxWeightStableSetInstance(Instance):
|
||||
"""An instance of the Maximum-Weight Stable Set Problem.
|
||||
|
||||
Given a graph G=(V,E) and a weight w_v for each vertex v, the problem asks for a stable
|
||||
set S of G maximizing sum(w_v for v in S). A stable set (also called independent set) is
|
||||
a subset of vertices, no two of which are adjacent.
|
||||
|
||||
This is one of Karp's 21 NP-complete problems.
|
||||
"""
|
||||
|
||||
def __init__(self, graph: Graph, weights: np.ndarray) -> None:
|
||||
super().__init__()
|
||||
self.graph = graph
|
||||
self.weights = weights
|
||||
self.nodes = list(self.graph.nodes)
|
||||
self.varname_to_node = {f"x[{v}]": v for v in self.nodes}
|
||||
|
||||
@overrides
|
||||
def to_model(self) -> pe.ConcreteModel:
|
||||
model = pe.ConcreteModel()
|
||||
model.x = pe.Var(self.nodes, domain=pe.Binary)
|
||||
model.OBJ = pe.Objective(
|
||||
expr=sum(model.x[v] * self.weights[v] for v in self.nodes),
|
||||
sense=pe.maximize,
|
||||
)
|
||||
model.clique_eqs = pe.ConstraintList()
|
||||
for clique in nx.find_cliques(self.graph):
|
||||
model.clique_eqs.add(sum(model.x[v] for v in clique) <= 1)
|
||||
return model
|
||||
|
||||
@overrides
|
||||
def get_variable_features(self, var_name: VariableName) -> List[float]:
|
||||
v1 = self.varname_to_node[var_name]
|
||||
neighbor_weights = [0.0] * 15
|
||||
neighbor_degrees = [100.0] * 15
|
||||
for v2 in self.graph.neighbors(v1):
|
||||
neighbor_weights += [self.weights[v2] / self.weights[v1]]
|
||||
neighbor_degrees += [self.graph.degree(v2) / self.graph.degree(v1)]
|
||||
neighbor_weights.sort(reverse=True)
|
||||
neighbor_degrees.sort()
|
||||
features = []
|
||||
features += neighbor_weights[:5]
|
||||
features += neighbor_degrees[:5]
|
||||
features += [self.graph.degree(v1)]
|
||||
return features
|
||||
|
||||
@overrides
|
||||
def get_variable_category(self, var: VariableName) -> Category:
|
||||
return "default"
|
||||
|
||||
|
||||
class MaxWeightStableSetGenerator:
|
||||
"""Random instance generator for the Maximum-Weight Stable Set Problem.
|
||||
|
||||
The generator has two modes of operation. When `fix_graph=True` is provided, one random
|
||||
Erdős-Rényi graph $G_{n,p}$ is generated in the constructor, where $n$ and $p$ are sampled
|
||||
from user-provided probability distributions `n` and `p`. To generate each instance, the
|
||||
generator independently samples each $w_v$ from the user-provided probability distribution `w`.
|
||||
The generator has two modes of operation. When `fix_graph=True` is provided,
|
||||
one random Erdős-Rényi graph $G_{n,p}$ is generated in the constructor, where $n$
|
||||
and $p$ are sampled from user-provided probability distributions `n` and `p`. To
|
||||
generate each instance, the generator independently samples each $w_v$ from the
|
||||
user-provided probability distribution `w`.
|
||||
|
||||
When `fix_graph=False`, a new random graph is generated for each instance; the remaining
|
||||
parameters are sampled in the same way.
|
||||
When `fix_graph=False`, a new random graph is generated for each instance; the
|
||||
remaining parameters are sampled in the same way.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
w=uniform(loc=10.0, scale=1.0),
|
||||
n=randint(low=250, high=251),
|
||||
p=uniform(loc=0.05, scale=0.0),
|
||||
fix_graph=True,
|
||||
w: rv_frozen = uniform(loc=10.0, scale=1.0),
|
||||
n: rv_frozen = randint(low=250, high=251),
|
||||
p: rv_frozen = uniform(loc=0.05, scale=0.0),
|
||||
fix_graph: bool = True,
|
||||
):
|
||||
"""Initialize the problem generator.
|
||||
|
||||
@@ -76,8 +130,8 @@ class MaxWeightStableSetGenerator:
|
||||
if fix_graph:
|
||||
self.graph = self._generate_graph()
|
||||
|
||||
def generate(self, n_samples):
|
||||
def _sample():
|
||||
def generate(self, n_samples: int) -> List[MaxWeightStableSetInstance]:
|
||||
def _sample() -> MaxWeightStableSetInstance:
|
||||
if self.graph is not None:
|
||||
graph = self.graph
|
||||
else:
|
||||
@@ -87,56 +141,5 @@ class MaxWeightStableSetGenerator:
|
||||
|
||||
return [_sample() for _ in range(n_samples)]
|
||||
|
||||
def _generate_graph(self):
|
||||
def _generate_graph(self) -> Graph:
|
||||
return nx.generators.random_graphs.binomial_graph(self.n.rvs(), self.p.rvs())
|
||||
|
||||
|
||||
class MaxWeightStableSetInstance(Instance):
|
||||
"""An instance of the Maximum-Weight Stable Set Problem.
|
||||
|
||||
Given a graph G=(V,E) and a weight w_v for each vertex v, the problem asks for a stable
|
||||
set S of G maximizing sum(w_v for v in S). A stable set (also called independent set) is
|
||||
a subset of vertices, no two of which are adjacent.
|
||||
|
||||
This is one of Karp's 21 NP-complete problems.
|
||||
"""
|
||||
|
||||
def __init__(self, graph, weights):
|
||||
super().__init__()
|
||||
self.graph = graph
|
||||
self.weights = weights
|
||||
self.nodes = list(self.graph.nodes)
|
||||
self.varname_to_node = {f"x[{v}]": v for v in self.nodes}
|
||||
|
||||
@overrides
|
||||
def to_model(self):
|
||||
model = pe.ConcreteModel()
|
||||
model.x = pe.Var(self.nodes, domain=pe.Binary)
|
||||
model.OBJ = pe.Objective(
|
||||
expr=sum(model.x[v] * self.weights[v] for v in self.nodes),
|
||||
sense=pe.maximize,
|
||||
)
|
||||
model.clique_eqs = pe.ConstraintList()
|
||||
for clique in nx.find_cliques(self.graph):
|
||||
model.clique_eqs.add(sum(model.x[v] for v in clique) <= 1)
|
||||
return model
|
||||
|
||||
@overrides
|
||||
def get_variable_features(self, var_name):
|
||||
v1 = self.varname_to_node[var_name]
|
||||
neighbor_weights = [0] * 15
|
||||
neighbor_degrees = [100] * 15
|
||||
for v2 in self.graph.neighbors(v1):
|
||||
neighbor_weights += [self.weights[v2] / self.weights[v1]]
|
||||
neighbor_degrees += [self.graph.degree(v2) / self.graph.degree(v1)]
|
||||
neighbor_weights.sort(reverse=True)
|
||||
neighbor_degrees.sort()
|
||||
features = []
|
||||
features += neighbor_weights[:5]
|
||||
features += neighbor_degrees[:5]
|
||||
features += [self.graph.degree(v1)]
|
||||
return features
|
||||
|
||||
@overrides
|
||||
def get_variable_category(self, var):
|
||||
return "default"
|
||||
|
||||
Reference in New Issue
Block a user