mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Add types to stab.py
This commit is contained in:
@@ -1,25 +1,27 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
from typing import List
|
||||||
|
|
||||||
import networkx as nx
|
import networkx as nx
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pyomo.environ as pe
|
import pyomo.environ as pe
|
||||||
|
from networkx import Graph
|
||||||
from overrides import overrides
|
from overrides import overrides
|
||||||
from scipy.stats import uniform, randint
|
from scipy.stats import uniform, randint
|
||||||
from scipy.stats.distributions import rv_frozen
|
from scipy.stats.distributions import rv_frozen
|
||||||
|
|
||||||
from miplearn.instance.base import Instance
|
from miplearn.instance.base import Instance
|
||||||
|
from miplearn.types import VariableName, Category
|
||||||
|
|
||||||
|
|
||||||
class ChallengeA:
|
class ChallengeA:
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
seed=42,
|
seed: int = 42,
|
||||||
n_training_instances=500,
|
n_training_instances: int = 500,
|
||||||
n_test_instances=50,
|
n_test_instances: int = 50,
|
||||||
):
|
) -> None:
|
||||||
|
|
||||||
np.random.seed(seed)
|
np.random.seed(seed)
|
||||||
self.generator = MaxWeightStableSetGenerator(
|
self.generator = MaxWeightStableSetGenerator(
|
||||||
w=uniform(loc=100.0, scale=50.0),
|
w=uniform(loc=100.0, scale=50.0),
|
||||||
@@ -35,24 +37,76 @@ class ChallengeA:
|
|||||||
self.test_instances = self.generator.generate(n_test_instances)
|
self.test_instances = self.generator.generate(n_test_instances)
|
||||||
|
|
||||||
|
|
||||||
|
class MaxWeightStableSetInstance(Instance):
|
||||||
|
"""An instance of the Maximum-Weight Stable Set Problem.
|
||||||
|
|
||||||
|
Given a graph G=(V,E) and a weight w_v for each vertex v, the problem asks for a stable
|
||||||
|
set S of G maximizing sum(w_v for v in S). A stable set (also called independent set) is
|
||||||
|
a subset of vertices, no two of which are adjacent.
|
||||||
|
|
||||||
|
This is one of Karp's 21 NP-complete problems.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, graph: Graph, weights: np.ndarray) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.graph = graph
|
||||||
|
self.weights = weights
|
||||||
|
self.nodes = list(self.graph.nodes)
|
||||||
|
self.varname_to_node = {f"x[{v}]": v for v in self.nodes}
|
||||||
|
|
||||||
|
@overrides
|
||||||
|
def to_model(self) -> pe.ConcreteModel:
|
||||||
|
model = pe.ConcreteModel()
|
||||||
|
model.x = pe.Var(self.nodes, domain=pe.Binary)
|
||||||
|
model.OBJ = pe.Objective(
|
||||||
|
expr=sum(model.x[v] * self.weights[v] for v in self.nodes),
|
||||||
|
sense=pe.maximize,
|
||||||
|
)
|
||||||
|
model.clique_eqs = pe.ConstraintList()
|
||||||
|
for clique in nx.find_cliques(self.graph):
|
||||||
|
model.clique_eqs.add(sum(model.x[v] for v in clique) <= 1)
|
||||||
|
return model
|
||||||
|
|
||||||
|
@overrides
|
||||||
|
def get_variable_features(self, var_name: VariableName) -> List[float]:
|
||||||
|
v1 = self.varname_to_node[var_name]
|
||||||
|
neighbor_weights = [0.0] * 15
|
||||||
|
neighbor_degrees = [100.0] * 15
|
||||||
|
for v2 in self.graph.neighbors(v1):
|
||||||
|
neighbor_weights += [self.weights[v2] / self.weights[v1]]
|
||||||
|
neighbor_degrees += [self.graph.degree(v2) / self.graph.degree(v1)]
|
||||||
|
neighbor_weights.sort(reverse=True)
|
||||||
|
neighbor_degrees.sort()
|
||||||
|
features = []
|
||||||
|
features += neighbor_weights[:5]
|
||||||
|
features += neighbor_degrees[:5]
|
||||||
|
features += [self.graph.degree(v1)]
|
||||||
|
return features
|
||||||
|
|
||||||
|
@overrides
|
||||||
|
def get_variable_category(self, var: VariableName) -> Category:
|
||||||
|
return "default"
|
||||||
|
|
||||||
|
|
||||||
class MaxWeightStableSetGenerator:
|
class MaxWeightStableSetGenerator:
|
||||||
"""Random instance generator for the Maximum-Weight Stable Set Problem.
|
"""Random instance generator for the Maximum-Weight Stable Set Problem.
|
||||||
|
|
||||||
The generator has two modes of operation. When `fix_graph=True` is provided, one random
|
The generator has two modes of operation. When `fix_graph=True` is provided,
|
||||||
Erdős-Rényi graph $G_{n,p}$ is generated in the constructor, where $n$ and $p$ are sampled
|
one random Erdős-Rényi graph $G_{n,p}$ is generated in the constructor, where $n$
|
||||||
from user-provided probability distributions `n` and `p`. To generate each instance, the
|
and $p$ are sampled from user-provided probability distributions `n` and `p`. To
|
||||||
generator independently samples each $w_v$ from the user-provided probability distribution `w`.
|
generate each instance, the generator independently samples each $w_v$ from the
|
||||||
|
user-provided probability distribution `w`.
|
||||||
|
|
||||||
When `fix_graph=False`, a new random graph is generated for each instance; the remaining
|
When `fix_graph=False`, a new random graph is generated for each instance; the
|
||||||
parameters are sampled in the same way.
|
remaining parameters are sampled in the same way.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
w=uniform(loc=10.0, scale=1.0),
|
w: rv_frozen = uniform(loc=10.0, scale=1.0),
|
||||||
n=randint(low=250, high=251),
|
n: rv_frozen = randint(low=250, high=251),
|
||||||
p=uniform(loc=0.05, scale=0.0),
|
p: rv_frozen = uniform(loc=0.05, scale=0.0),
|
||||||
fix_graph=True,
|
fix_graph: bool = True,
|
||||||
):
|
):
|
||||||
"""Initialize the problem generator.
|
"""Initialize the problem generator.
|
||||||
|
|
||||||
@@ -76,8 +130,8 @@ class MaxWeightStableSetGenerator:
|
|||||||
if fix_graph:
|
if fix_graph:
|
||||||
self.graph = self._generate_graph()
|
self.graph = self._generate_graph()
|
||||||
|
|
||||||
def generate(self, n_samples):
|
def generate(self, n_samples: int) -> List[MaxWeightStableSetInstance]:
|
||||||
def _sample():
|
def _sample() -> MaxWeightStableSetInstance:
|
||||||
if self.graph is not None:
|
if self.graph is not None:
|
||||||
graph = self.graph
|
graph = self.graph
|
||||||
else:
|
else:
|
||||||
@@ -87,56 +141,5 @@ class MaxWeightStableSetGenerator:
|
|||||||
|
|
||||||
return [_sample() for _ in range(n_samples)]
|
return [_sample() for _ in range(n_samples)]
|
||||||
|
|
||||||
def _generate_graph(self):
|
def _generate_graph(self) -> Graph:
|
||||||
return nx.generators.random_graphs.binomial_graph(self.n.rvs(), self.p.rvs())
|
return nx.generators.random_graphs.binomial_graph(self.n.rvs(), self.p.rvs())
|
||||||
|
|
||||||
|
|
||||||
class MaxWeightStableSetInstance(Instance):
|
|
||||||
"""An instance of the Maximum-Weight Stable Set Problem.
|
|
||||||
|
|
||||||
Given a graph G=(V,E) and a weight w_v for each vertex v, the problem asks for a stable
|
|
||||||
set S of G maximizing sum(w_v for v in S). A stable set (also called independent set) is
|
|
||||||
a subset of vertices, no two of which are adjacent.
|
|
||||||
|
|
||||||
This is one of Karp's 21 NP-complete problems.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, graph, weights):
|
|
||||||
super().__init__()
|
|
||||||
self.graph = graph
|
|
||||||
self.weights = weights
|
|
||||||
self.nodes = list(self.graph.nodes)
|
|
||||||
self.varname_to_node = {f"x[{v}]": v for v in self.nodes}
|
|
||||||
|
|
||||||
@overrides
|
|
||||||
def to_model(self):
|
|
||||||
model = pe.ConcreteModel()
|
|
||||||
model.x = pe.Var(self.nodes, domain=pe.Binary)
|
|
||||||
model.OBJ = pe.Objective(
|
|
||||||
expr=sum(model.x[v] * self.weights[v] for v in self.nodes),
|
|
||||||
sense=pe.maximize,
|
|
||||||
)
|
|
||||||
model.clique_eqs = pe.ConstraintList()
|
|
||||||
for clique in nx.find_cliques(self.graph):
|
|
||||||
model.clique_eqs.add(sum(model.x[v] for v in clique) <= 1)
|
|
||||||
return model
|
|
||||||
|
|
||||||
@overrides
|
|
||||||
def get_variable_features(self, var_name):
|
|
||||||
v1 = self.varname_to_node[var_name]
|
|
||||||
neighbor_weights = [0] * 15
|
|
||||||
neighbor_degrees = [100] * 15
|
|
||||||
for v2 in self.graph.neighbors(v1):
|
|
||||||
neighbor_weights += [self.weights[v2] / self.weights[v1]]
|
|
||||||
neighbor_degrees += [self.graph.degree(v2) / self.graph.degree(v1)]
|
|
||||||
neighbor_weights.sort(reverse=True)
|
|
||||||
neighbor_degrees.sort()
|
|
||||||
features = []
|
|
||||||
features += neighbor_weights[:5]
|
|
||||||
features += neighbor_degrees[:5]
|
|
||||||
features += [self.graph.degree(v1)]
|
|
||||||
return features
|
|
||||||
|
|
||||||
@overrides
|
|
||||||
def get_variable_category(self, var):
|
|
||||||
return "default"
|
|
||||||
|
|||||||
Reference in New Issue
Block a user