Add types to stab.py

master
Alinson S. Xavier 5 years ago
parent 2c93ff38fc
commit f7545204d7
No known key found for this signature in database
GPG Key ID: DCA0DAD4D2F58624

@ -1,25 +1,27 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved. # Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details. # Released under the modified BSD license. See COPYING.md for more details.
from typing import List
import networkx as nx import networkx as nx
import numpy as np import numpy as np
import pyomo.environ as pe import pyomo.environ as pe
from networkx import Graph
from overrides import overrides from overrides import overrides
from scipy.stats import uniform, randint from scipy.stats import uniform, randint
from scipy.stats.distributions import rv_frozen from scipy.stats.distributions import rv_frozen
from miplearn.instance.base import Instance from miplearn.instance.base import Instance
from miplearn.types import VariableName, Category
class ChallengeA: class ChallengeA:
def __init__( def __init__(
self, self,
seed=42, seed: int = 42,
n_training_instances=500, n_training_instances: int = 500,
n_test_instances=50, n_test_instances: int = 50,
): ) -> None:
np.random.seed(seed) np.random.seed(seed)
self.generator = MaxWeightStableSetGenerator( self.generator = MaxWeightStableSetGenerator(
w=uniform(loc=100.0, scale=50.0), w=uniform(loc=100.0, scale=50.0),
@ -35,62 +37,6 @@ class ChallengeA:
self.test_instances = self.generator.generate(n_test_instances) self.test_instances = self.generator.generate(n_test_instances)
class MaxWeightStableSetGenerator:
"""Random instance generator for the Maximum-Weight Stable Set Problem.
The generator has two modes of operation. When `fix_graph=True` is provided, one random
Erdős-Rényi graph $G_{n,p}$ is generated in the constructor, where $n$ and $p$ are sampled
from user-provided probability distributions `n` and `p`. To generate each instance, the
generator independently samples each $w_v$ from the user-provided probability distribution `w`.
When `fix_graph=False`, a new random graph is generated for each instance; the remaining
parameters are sampled in the same way.
"""
def __init__(
self,
w=uniform(loc=10.0, scale=1.0),
n=randint(low=250, high=251),
p=uniform(loc=0.05, scale=0.0),
fix_graph=True,
):
"""Initialize the problem generator.
Parameters
----------
w: rv_continuous
Probability distribution for vertex weights.
n: rv_discrete
Probability distribution for parameter $n$ in Erdős-Rényi model.
p: rv_continuous
Probability distribution for parameter $p$ in Erdős-Rényi model.
"""
assert isinstance(w, rv_frozen), "w should be a SciPy probability distribution"
assert isinstance(n, rv_frozen), "n should be a SciPy probability distribution"
assert isinstance(p, rv_frozen), "p should be a SciPy probability distribution"
self.w = w
self.n = n
self.p = p
self.fix_graph = fix_graph
self.graph = None
if fix_graph:
self.graph = self._generate_graph()
def generate(self, n_samples):
def _sample():
if self.graph is not None:
graph = self.graph
else:
graph = self._generate_graph()
weights = self.w.rvs(graph.number_of_nodes())
return MaxWeightStableSetInstance(graph, weights)
return [_sample() for _ in range(n_samples)]
def _generate_graph(self):
return nx.generators.random_graphs.binomial_graph(self.n.rvs(), self.p.rvs())
class MaxWeightStableSetInstance(Instance): class MaxWeightStableSetInstance(Instance):
"""An instance of the Maximum-Weight Stable Set Problem. """An instance of the Maximum-Weight Stable Set Problem.
@ -101,7 +47,7 @@ class MaxWeightStableSetInstance(Instance):
This is one of Karp's 21 NP-complete problems. This is one of Karp's 21 NP-complete problems.
""" """
def __init__(self, graph, weights): def __init__(self, graph: Graph, weights: np.ndarray) -> None:
super().__init__() super().__init__()
self.graph = graph self.graph = graph
self.weights = weights self.weights = weights
@ -109,7 +55,7 @@ class MaxWeightStableSetInstance(Instance):
self.varname_to_node = {f"x[{v}]": v for v in self.nodes} self.varname_to_node = {f"x[{v}]": v for v in self.nodes}
@overrides @overrides
def to_model(self): def to_model(self) -> pe.ConcreteModel:
model = pe.ConcreteModel() model = pe.ConcreteModel()
model.x = pe.Var(self.nodes, domain=pe.Binary) model.x = pe.Var(self.nodes, domain=pe.Binary)
model.OBJ = pe.Objective( model.OBJ = pe.Objective(
@ -122,10 +68,10 @@ class MaxWeightStableSetInstance(Instance):
return model return model
@overrides @overrides
def get_variable_features(self, var_name): def get_variable_features(self, var_name: VariableName) -> List[float]:
v1 = self.varname_to_node[var_name] v1 = self.varname_to_node[var_name]
neighbor_weights = [0] * 15 neighbor_weights = [0.0] * 15
neighbor_degrees = [100] * 15 neighbor_degrees = [100.0] * 15
for v2 in self.graph.neighbors(v1): for v2 in self.graph.neighbors(v1):
neighbor_weights += [self.weights[v2] / self.weights[v1]] neighbor_weights += [self.weights[v2] / self.weights[v1]]
neighbor_degrees += [self.graph.degree(v2) / self.graph.degree(v1)] neighbor_degrees += [self.graph.degree(v2) / self.graph.degree(v1)]
@ -138,5 +84,62 @@ class MaxWeightStableSetInstance(Instance):
return features return features
@overrides @overrides
def get_variable_category(self, var): def get_variable_category(self, var: VariableName) -> Category:
return "default" return "default"
class MaxWeightStableSetGenerator:
"""Random instance generator for the Maximum-Weight Stable Set Problem.
The generator has two modes of operation. When `fix_graph=True` is provided,
one random Erdős-Rényi graph $G_{n,p}$ is generated in the constructor, where $n$
and $p$ are sampled from user-provided probability distributions `n` and `p`. To
generate each instance, the generator independently samples each $w_v$ from the
user-provided probability distribution `w`.
When `fix_graph=False`, a new random graph is generated for each instance; the
remaining parameters are sampled in the same way.
"""
def __init__(
self,
w: rv_frozen = uniform(loc=10.0, scale=1.0),
n: rv_frozen = randint(low=250, high=251),
p: rv_frozen = uniform(loc=0.05, scale=0.0),
fix_graph: bool = True,
):
"""Initialize the problem generator.
Parameters
----------
w: rv_continuous
Probability distribution for vertex weights.
n: rv_discrete
Probability distribution for parameter $n$ in Erdős-Rényi model.
p: rv_continuous
Probability distribution for parameter $p$ in Erdős-Rényi model.
"""
assert isinstance(w, rv_frozen), "w should be a SciPy probability distribution"
assert isinstance(n, rv_frozen), "n should be a SciPy probability distribution"
assert isinstance(p, rv_frozen), "p should be a SciPy probability distribution"
self.w = w
self.n = n
self.p = p
self.fix_graph = fix_graph
self.graph = None
if fix_graph:
self.graph = self._generate_graph()
def generate(self, n_samples: int) -> List[MaxWeightStableSetInstance]:
def _sample() -> MaxWeightStableSetInstance:
if self.graph is not None:
graph = self.graph
else:
graph = self._generate_graph()
weights = self.w.rvs(graph.number_of_nodes())
return MaxWeightStableSetInstance(graph, weights)
return [_sample() for _ in range(n_samples)]
def _generate_graph(self) -> Graph:
return nx.generators.random_graphs.binomial_graph(self.n.rvs(), self.p.rvs())

Loading…
Cancel
Save