mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Simplify BenchmarkRunner; update docs
This commit is contained in:
@@ -4,40 +4,71 @@
|
||||
|
||||
import logging
|
||||
import os
|
||||
from copy import deepcopy
|
||||
from typing import Dict, Union, List
|
||||
|
||||
import pandas as pd
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
from miplearn.instance import Instance
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
from miplearn.types import LearningSolveStats
|
||||
|
||||
|
||||
class BenchmarkRunner:
|
||||
def __init__(self, solvers):
|
||||
assert isinstance(solvers, dict)
|
||||
for solver in solvers.values():
|
||||
assert isinstance(solver, LearningSolver)
|
||||
self.solvers = solvers
|
||||
self.results = None
|
||||
"""
|
||||
Utility class that simplifies the task of comparing the performance of different
|
||||
solvers.
|
||||
|
||||
def solve(self, instances, tee=False):
|
||||
for (solver_name, solver) in self.solvers.items():
|
||||
for i in tqdm(range(len((instances)))):
|
||||
results = solver.solve(deepcopy(instances[i]), tee=tee)
|
||||
self._push_result(
|
||||
results,
|
||||
solver=solver,
|
||||
solver_name=solver_name,
|
||||
instance=i,
|
||||
)
|
||||
Example
|
||||
-------
|
||||
```python
|
||||
benchmark = BenchmarkRunner({
|
||||
"Baseline": LearningSolver(...),
|
||||
"Strategy A": LearningSolver(...),
|
||||
"Strategy B": LearningSolver(...),
|
||||
"Strategy C": LearningSolver(...),
|
||||
})
|
||||
benchmark.fit(train_instances)
|
||||
benchmark.parallel_solve(test_instances, n_jobs=5)
|
||||
benchmark.save_results("result.csv")
|
||||
```
|
||||
|
||||
Parameters
|
||||
----------
|
||||
solvers: Dict[str, LearningSolver]
|
||||
Dictionary containing the solvers to compare. Solvers may have different
|
||||
arguments and components. The key should be the name of the solver. It
|
||||
appears in the exported tables of results.
|
||||
"""
|
||||
|
||||
def __init__(self, solvers: Dict[str, LearningSolver]) -> None:
|
||||
self.solvers: Dict[str, LearningSolver] = solvers
|
||||
self.results = pd.DataFrame(
|
||||
columns=[
|
||||
"Solver",
|
||||
"Instance",
|
||||
]
|
||||
)
|
||||
|
||||
def parallel_solve(
|
||||
self,
|
||||
instances,
|
||||
n_jobs=1,
|
||||
n_trials=1,
|
||||
index_offset=0,
|
||||
):
|
||||
instances: Union[List[str], List[Instance]],
|
||||
n_jobs: int = 1,
|
||||
n_trials: int = 3,
|
||||
) -> None:
|
||||
"""
|
||||
Solves the given instances in parallel and collect benchmark statistics.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
instances: Union[List[str], List[Instance]]
|
||||
List of instances to solve. This can either be a list of instances
|
||||
already loaded in memory, or a list of filenames pointing to pickled (and
|
||||
optionally gzipped) files.
|
||||
n_jobs: int
|
||||
List of instances to solve in parallel at a time.
|
||||
n_trials: int
|
||||
How many times each instance should be solved.
|
||||
"""
|
||||
self._silence_miplearn_logger()
|
||||
trials = instances * n_trials
|
||||
for (solver_name, solver) in self.solvers.items():
|
||||
@@ -48,68 +79,44 @@ class BenchmarkRunner:
|
||||
discard_outputs=True,
|
||||
)
|
||||
for i in range(len(trials)):
|
||||
idx = (i % len(instances)) + index_offset
|
||||
self._push_result(
|
||||
results[i],
|
||||
solver=solver,
|
||||
solver_name=solver_name,
|
||||
instance=idx,
|
||||
)
|
||||
idx = i % len(instances)
|
||||
results[i]["Solver"] = solver_name
|
||||
results[i]["Instance"] = idx
|
||||
self.results = self.results.append(pd.DataFrame([results[i]]))
|
||||
self._restore_miplearn_logger()
|
||||
|
||||
def raw_results(self):
|
||||
return self.results
|
||||
def write_csv(self, filename: str) -> None:
|
||||
"""
|
||||
Writes the collected results to a CSV file.
|
||||
|
||||
def save_results(self, filename):
|
||||
Parameters
|
||||
----------
|
||||
filename: str
|
||||
The name of the file.
|
||||
"""
|
||||
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
||||
self.results.to_csv(filename)
|
||||
|
||||
def load_results(self, filename):
|
||||
self.results = pd.concat([self.results, pd.read_csv(filename, index_col=0)])
|
||||
def fit(self, instances: Union[List[str], List[Instance]]) -> None:
|
||||
"""
|
||||
Trains all solvers with the provided training instances.
|
||||
|
||||
def load_state(self, filename):
|
||||
Parameters
|
||||
----------
|
||||
instances: Union[List[str], List[Instance]]
|
||||
List of training instances. This can either be a list of instances
|
||||
already loaded in memory, or a list of filenames pointing to pickled (and
|
||||
optionally gzipped) files.
|
||||
|
||||
"""
|
||||
for (solver_name, solver) in self.solvers.items():
|
||||
solver.load_state(filename)
|
||||
solver.fit(instances)
|
||||
|
||||
def fit(self, training_instances):
|
||||
for (solver_name, solver) in self.solvers.items():
|
||||
solver.fit(training_instances)
|
||||
|
||||
@staticmethod
|
||||
def _compute_gap(ub, lb):
|
||||
if lb is None or ub is None or lb * ub < 0:
|
||||
# solver did not find a solution and/or bound, use maximum gap possible
|
||||
return 1.0
|
||||
elif abs(ub - lb) < 1e-6:
|
||||
# avoid division by zero when ub = lb = 0
|
||||
return 0.0
|
||||
else:
|
||||
# divide by max(abs(ub),abs(lb)) to ensure gap <= 1
|
||||
return (ub - lb) / max(abs(ub), abs(lb))
|
||||
|
||||
def _push_result(self, result, solver, solver_name, instance):
|
||||
if self.results is None:
|
||||
self.results = pd.DataFrame(
|
||||
# Show the following columns first in the CSV file
|
||||
columns=[
|
||||
"Solver",
|
||||
"Instance",
|
||||
]
|
||||
)
|
||||
result["Solver"] = solver_name
|
||||
result["Instance"] = instance
|
||||
result["Gap"] = self._compute_gap(
|
||||
ub=result["Upper bound"],
|
||||
lb=result["Lower bound"],
|
||||
)
|
||||
result["Mode"] = solver.mode
|
||||
self.results = self.results.append(pd.DataFrame([result]))
|
||||
|
||||
def _silence_miplearn_logger(self):
|
||||
def _silence_miplearn_logger(self) -> None:
|
||||
miplearn_logger = logging.getLogger("miplearn")
|
||||
self.prev_log_level = miplearn_logger.getEffectiveLevel()
|
||||
miplearn_logger.setLevel(logging.WARNING)
|
||||
|
||||
def _restore_miplearn_logger(self):
|
||||
def _restore_miplearn_logger(self) -> None:
|
||||
miplearn_logger = logging.getLogger("miplearn")
|
||||
miplearn_logger.setLevel(self.prev_log_level)
|
||||
|
||||
@@ -6,7 +6,7 @@ from abc import ABC, abstractmethod
|
||||
from typing import Any, List, Union, TYPE_CHECKING
|
||||
|
||||
from miplearn.instance import Instance
|
||||
from miplearn.types import MIPSolveStats, TrainingSample
|
||||
from miplearn.types import LearningSolveStats, TrainingSample
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
@@ -47,7 +47,7 @@ class Component(ABC):
|
||||
solver: "LearningSolver",
|
||||
instance: Instance,
|
||||
model: Any,
|
||||
stats: MIPSolveStats,
|
||||
stats: LearningSolveStats,
|
||||
training_data: TrainingSample,
|
||||
) -> None:
|
||||
"""
|
||||
@@ -61,13 +61,13 @@ class Component(ABC):
|
||||
The instance being solved.
|
||||
model: Any
|
||||
The concrete optimization model being solved.
|
||||
stats: dict
|
||||
stats: LearningSolveStats
|
||||
A dictionary containing statistics about the solution process, such as
|
||||
number of nodes explored and running time. Components are free to add
|
||||
their own statistics here. For example, PrimalSolutionComponent adds
|
||||
statistics regarding the number of predicted variables. All statistics in
|
||||
this dictionary are exported to the benchmark CSV file.
|
||||
training_data: dict
|
||||
training_data: TrainingSample
|
||||
A dictionary containing data that may be useful for training machine
|
||||
learning models and accelerating the solution process. Components are
|
||||
free to add their own training data here. For example,
|
||||
|
||||
@@ -20,7 +20,7 @@ from miplearn.instance import Instance
|
||||
from miplearn.solvers import _RedirectOutput
|
||||
from miplearn.solvers.internal import InternalSolver
|
||||
from miplearn.solvers.pyomo.gurobi import GurobiPyomoSolver
|
||||
from miplearn.types import MIPSolveStats, TrainingSample
|
||||
from miplearn.types import MIPSolveStats, TrainingSample, LearningSolveStats
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -127,7 +127,7 @@ class LearningSolver:
|
||||
output_filename: Optional[str] = None,
|
||||
discard_output: bool = False,
|
||||
tee: bool = False,
|
||||
) -> MIPSolveStats:
|
||||
) -> LearningSolveStats:
|
||||
|
||||
# Load instance from file, if necessary
|
||||
filename = None
|
||||
@@ -203,15 +203,24 @@ class LearningSolver:
|
||||
|
||||
# Solve MILP
|
||||
logger.info("Solving MILP...")
|
||||
stats = self.internal_solver.solve(
|
||||
tee=tee,
|
||||
iteration_cb=iteration_cb_wrapper,
|
||||
lazy_cb=lazy_cb,
|
||||
stats = cast(
|
||||
LearningSolveStats,
|
||||
self.internal_solver.solve(
|
||||
tee=tee,
|
||||
iteration_cb=iteration_cb_wrapper,
|
||||
lazy_cb=lazy_cb,
|
||||
),
|
||||
)
|
||||
if "LP value" in training_sample.keys():
|
||||
stats["LP value"] = training_sample["LP value"]
|
||||
stats["Solver"] = "default"
|
||||
stats["Gap"] = self._compute_gap(
|
||||
ub=stats["Upper bound"],
|
||||
lb=stats["Lower bound"],
|
||||
)
|
||||
stats["Mode"] = self.mode
|
||||
|
||||
# Read MIP solution and bounds
|
||||
# Add some information to training_sample
|
||||
training_sample["Lower bound"] = stats["Lower bound"]
|
||||
training_sample["Upper bound"] = stats["Upper bound"]
|
||||
training_sample["MIP log"] = stats["Log"]
|
||||
@@ -242,7 +251,7 @@ class LearningSolver:
|
||||
output_filename: Optional[str] = None,
|
||||
discard_output: bool = False,
|
||||
tee: bool = False,
|
||||
) -> MIPSolveStats:
|
||||
) -> LearningSolveStats:
|
||||
"""
|
||||
Solves the given instance. If trained machine-learning models are
|
||||
available, they will be used to accelerate the solution process.
|
||||
@@ -275,7 +284,7 @@ class LearningSolver:
|
||||
|
||||
Returns
|
||||
-------
|
||||
MIPSolveStats
|
||||
LearningSolveStats
|
||||
A dictionary of solver statistics containing at least the following
|
||||
keys: "Lower bound", "Upper bound", "Wallclock time", "Nodes",
|
||||
"Sense", "Log", "Warm start value" and "LP value".
|
||||
@@ -311,7 +320,7 @@ class LearningSolver:
|
||||
label: str = "Solve",
|
||||
output_filenames: Optional[List[str]] = None,
|
||||
discard_outputs: bool = False,
|
||||
) -> List[MIPSolveStats]:
|
||||
) -> List[LearningSolveStats]:
|
||||
"""
|
||||
Solves multiple instances in parallel.
|
||||
|
||||
@@ -338,7 +347,7 @@ class LearningSolver:
|
||||
|
||||
Returns
|
||||
-------
|
||||
List[MIPSolveStats]
|
||||
List[LearningSolveStats]
|
||||
List of solver statistics, with one entry for each provided instance.
|
||||
The list is the same you would obtain by calling
|
||||
`[solver.solve(p) for p in instances]`
|
||||
@@ -384,3 +393,15 @@ class LearningSolver:
|
||||
def __getstate__(self) -> Dict:
|
||||
self.internal_solver = None
|
||||
return self.__dict__
|
||||
|
||||
@staticmethod
|
||||
def _compute_gap(ub: Optional[float], lb: Optional[float]) -> Optional[float]:
|
||||
if lb is None or ub is None or lb * ub < 0:
|
||||
# solver did not find a solution and/or bound
|
||||
return None
|
||||
elif abs(ub - lb) < 1e-6:
|
||||
# avoid division by zero when ub = lb = 0
|
||||
return 0.0
|
||||
else:
|
||||
# divide by max(abs(ub),abs(lb)) to ensure gap <= 1
|
||||
return (ub - lb) / max(abs(ub), abs(lb))
|
||||
|
||||
@@ -130,3 +130,13 @@ def test_simulate_perfect():
|
||||
)
|
||||
stats = solver.solve(tmp.name)
|
||||
assert stats["Lower bound"] == stats["Predicted LB"]
|
||||
|
||||
|
||||
def test_gap():
|
||||
assert LearningSolver._compute_gap(ub=0.0, lb=0.0) == 0.0
|
||||
assert LearningSolver._compute_gap(ub=1.0, lb=0.5) == 0.5
|
||||
assert LearningSolver._compute_gap(ub=1.0, lb=1.0) == 0.0
|
||||
assert LearningSolver._compute_gap(ub=1.0, lb=-1.0) is None
|
||||
assert LearningSolver._compute_gap(ub=1.0, lb=None) is None
|
||||
assert LearningSolver._compute_gap(ub=None, lb=1.0) is None
|
||||
assert LearningSolver._compute_gap(ub=None, lb=None) is None
|
||||
|
||||
@@ -29,21 +29,7 @@ def test_benchmark():
|
||||
benchmark = BenchmarkRunner(test_solvers)
|
||||
benchmark.fit(train_instances)
|
||||
benchmark.parallel_solve(test_instances, n_jobs=2, n_trials=2)
|
||||
assert benchmark.raw_results().values.shape == (12, 14)
|
||||
assert benchmark.results.values.shape == (12, 14)
|
||||
|
||||
benchmark.save_results("/tmp/benchmark.csv")
|
||||
benchmark.write_csv("/tmp/benchmark.csv")
|
||||
assert os.path.isfile("/tmp/benchmark.csv")
|
||||
|
||||
benchmark = BenchmarkRunner(test_solvers)
|
||||
benchmark.load_results("/tmp/benchmark.csv")
|
||||
assert benchmark.raw_results().values.shape == (12, 14)
|
||||
|
||||
|
||||
def test_gap():
|
||||
assert BenchmarkRunner._compute_gap(ub=0.0, lb=0.0) == 0.0
|
||||
assert BenchmarkRunner._compute_gap(ub=1.0, lb=0.5) == 0.5
|
||||
assert BenchmarkRunner._compute_gap(ub=1.0, lb=1.0) == 0.0
|
||||
assert BenchmarkRunner._compute_gap(ub=1.0, lb=-1.0) == 1.0
|
||||
assert BenchmarkRunner._compute_gap(ub=1.0, lb=None) == 1.0
|
||||
assert BenchmarkRunner._compute_gap(ub=None, lb=1.0) == 1.0
|
||||
assert BenchmarkRunner._compute_gap(ub=None, lb=None) == 1.0
|
||||
|
||||
@@ -47,6 +47,25 @@ MIPSolveStats = TypedDict(
|
||||
},
|
||||
)
|
||||
|
||||
LearningSolveStats = TypedDict(
|
||||
"LearningSolveStats",
|
||||
{
|
||||
"Gap": Optional[float],
|
||||
"Instance": Union[str, int],
|
||||
"LP value": Optional[float],
|
||||
"Log": str,
|
||||
"Lower bound": Optional[float],
|
||||
"Mode": str,
|
||||
"Nodes": Optional[int],
|
||||
"Sense": str,
|
||||
"Solver": str,
|
||||
"Upper bound": Optional[float],
|
||||
"Wallclock time": float,
|
||||
"Warm start value": Optional[float],
|
||||
},
|
||||
total=False,
|
||||
)
|
||||
|
||||
IterationCallback = Callable[[], bool]
|
||||
|
||||
LazyCallback = Callable[[Any, Any], None]
|
||||
|
||||
Reference in New Issue
Block a user