mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Simplify BenchmarkRunner; update docs
This commit is contained in:
@@ -20,7 +20,7 @@ from miplearn.instance import Instance
|
||||
from miplearn.solvers import _RedirectOutput
|
||||
from miplearn.solvers.internal import InternalSolver
|
||||
from miplearn.solvers.pyomo.gurobi import GurobiPyomoSolver
|
||||
from miplearn.types import MIPSolveStats, TrainingSample
|
||||
from miplearn.types import MIPSolveStats, TrainingSample, LearningSolveStats
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -127,7 +127,7 @@ class LearningSolver:
|
||||
output_filename: Optional[str] = None,
|
||||
discard_output: bool = False,
|
||||
tee: bool = False,
|
||||
) -> MIPSolveStats:
|
||||
) -> LearningSolveStats:
|
||||
|
||||
# Load instance from file, if necessary
|
||||
filename = None
|
||||
@@ -203,15 +203,24 @@ class LearningSolver:
|
||||
|
||||
# Solve MILP
|
||||
logger.info("Solving MILP...")
|
||||
stats = self.internal_solver.solve(
|
||||
tee=tee,
|
||||
iteration_cb=iteration_cb_wrapper,
|
||||
lazy_cb=lazy_cb,
|
||||
stats = cast(
|
||||
LearningSolveStats,
|
||||
self.internal_solver.solve(
|
||||
tee=tee,
|
||||
iteration_cb=iteration_cb_wrapper,
|
||||
lazy_cb=lazy_cb,
|
||||
),
|
||||
)
|
||||
if "LP value" in training_sample.keys():
|
||||
stats["LP value"] = training_sample["LP value"]
|
||||
stats["Solver"] = "default"
|
||||
stats["Gap"] = self._compute_gap(
|
||||
ub=stats["Upper bound"],
|
||||
lb=stats["Lower bound"],
|
||||
)
|
||||
stats["Mode"] = self.mode
|
||||
|
||||
# Read MIP solution and bounds
|
||||
# Add some information to training_sample
|
||||
training_sample["Lower bound"] = stats["Lower bound"]
|
||||
training_sample["Upper bound"] = stats["Upper bound"]
|
||||
training_sample["MIP log"] = stats["Log"]
|
||||
@@ -242,7 +251,7 @@ class LearningSolver:
|
||||
output_filename: Optional[str] = None,
|
||||
discard_output: bool = False,
|
||||
tee: bool = False,
|
||||
) -> MIPSolveStats:
|
||||
) -> LearningSolveStats:
|
||||
"""
|
||||
Solves the given instance. If trained machine-learning models are
|
||||
available, they will be used to accelerate the solution process.
|
||||
@@ -275,7 +284,7 @@ class LearningSolver:
|
||||
|
||||
Returns
|
||||
-------
|
||||
MIPSolveStats
|
||||
LearningSolveStats
|
||||
A dictionary of solver statistics containing at least the following
|
||||
keys: "Lower bound", "Upper bound", "Wallclock time", "Nodes",
|
||||
"Sense", "Log", "Warm start value" and "LP value".
|
||||
@@ -311,7 +320,7 @@ class LearningSolver:
|
||||
label: str = "Solve",
|
||||
output_filenames: Optional[List[str]] = None,
|
||||
discard_outputs: bool = False,
|
||||
) -> List[MIPSolveStats]:
|
||||
) -> List[LearningSolveStats]:
|
||||
"""
|
||||
Solves multiple instances in parallel.
|
||||
|
||||
@@ -338,7 +347,7 @@ class LearningSolver:
|
||||
|
||||
Returns
|
||||
-------
|
||||
List[MIPSolveStats]
|
||||
List[LearningSolveStats]
|
||||
List of solver statistics, with one entry for each provided instance.
|
||||
The list is the same you would obtain by calling
|
||||
`[solver.solve(p) for p in instances]`
|
||||
@@ -384,3 +393,15 @@ class LearningSolver:
|
||||
def __getstate__(self) -> Dict:
|
||||
self.internal_solver = None
|
||||
return self.__dict__
|
||||
|
||||
@staticmethod
|
||||
def _compute_gap(ub: Optional[float], lb: Optional[float]) -> Optional[float]:
|
||||
if lb is None or ub is None or lb * ub < 0:
|
||||
# solver did not find a solution and/or bound
|
||||
return None
|
||||
elif abs(ub - lb) < 1e-6:
|
||||
# avoid division by zero when ub = lb = 0
|
||||
return 0.0
|
||||
else:
|
||||
# divide by max(abs(ub),abs(lb)) to ensure gap <= 1
|
||||
return (ub - lb) / max(abs(ub), abs(lb))
|
||||
|
||||
@@ -130,3 +130,13 @@ def test_simulate_perfect():
|
||||
)
|
||||
stats = solver.solve(tmp.name)
|
||||
assert stats["Lower bound"] == stats["Predicted LB"]
|
||||
|
||||
|
||||
def test_gap():
|
||||
assert LearningSolver._compute_gap(ub=0.0, lb=0.0) == 0.0
|
||||
assert LearningSolver._compute_gap(ub=1.0, lb=0.5) == 0.5
|
||||
assert LearningSolver._compute_gap(ub=1.0, lb=1.0) == 0.0
|
||||
assert LearningSolver._compute_gap(ub=1.0, lb=-1.0) is None
|
||||
assert LearningSolver._compute_gap(ub=1.0, lb=None) is None
|
||||
assert LearningSolver._compute_gap(ub=None, lb=1.0) is None
|
||||
assert LearningSolver._compute_gap(ub=None, lb=None) is None
|
||||
|
||||
Reference in New Issue
Block a user