mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-08 18:38:51 -06:00
Add customizable branch priority; add more metrics to BenchmarkRunner
This commit is contained in:
@@ -18,15 +18,21 @@ class BenchmarkRunner:
|
||||
solver.load(filename)
|
||||
solver.fit()
|
||||
|
||||
def parallel_solve(self, instances, n_jobs=1):
|
||||
def parallel_solve(self, instances, n_jobs=1, n_trials=1):
|
||||
if self.results is None:
|
||||
self.results = pd.DataFrame(columns=["Solver",
|
||||
"Instance",
|
||||
"Wallclock Time",
|
||||
"Obj Value",
|
||||
"Lower Bound",
|
||||
"Upper Bound",
|
||||
"Gap",
|
||||
"Nodes",
|
||||
])
|
||||
instances = instances * n_trials
|
||||
for (name, solver) in self.solvers.items():
|
||||
results = solver.parallel_solve(instances, n_jobs=n_jobs, label=name)
|
||||
results = solver.parallel_solve(instances,
|
||||
n_jobs=n_jobs,
|
||||
label=name)
|
||||
for i in range(len(instances)):
|
||||
wallclock_time = None
|
||||
for key in ["Time", "Wall time", "Wallclock time"]:
|
||||
@@ -35,19 +41,35 @@ class BenchmarkRunner:
|
||||
if str(results[i]["Solver"][0][key]) == "<undefined>":
|
||||
continue
|
||||
wallclock_time = float(results[i]["Solver"][0][key])
|
||||
nodes = results[i]["Solver"][0]["Nodes"]
|
||||
lb = results[i]["Problem"][0]["Lower bound"]
|
||||
ub = results[i]["Problem"][0]["Upper bound"]
|
||||
gap = (ub - lb) / lb
|
||||
self.results = self.results.append({
|
||||
"Solver": name,
|
||||
"Instance": i,
|
||||
"Wallclock Time": wallclock_time,
|
||||
"Obj Value": results[i]["Problem"][0]["Lower bound"]
|
||||
"Lower Bound": lb,
|
||||
"Upper Bound": ub,
|
||||
"Gap": gap,
|
||||
"Nodes": nodes,
|
||||
}, ignore_index=True)
|
||||
groups = self.results.groupby("Instance")
|
||||
best_obj_value = groups["Obj Value"].transform("max")
|
||||
best_lower_bound = groups["Lower Bound"].transform("max")
|
||||
best_upper_bound = groups["Upper Bound"].transform("min")
|
||||
best_gap = groups["Gap"].transform("min")
|
||||
best_nodes = groups["Nodes"].transform("min")
|
||||
best_wallclock_time = groups["Wallclock Time"].transform("min")
|
||||
self.results["Relative Obj Value"] = \
|
||||
self.results["Obj Value"] / best_obj_value
|
||||
self.results["Relative Lower Bound"] = \
|
||||
self.results["Lower Bound"] / best_lower_bound
|
||||
self.results["Relative Upper Bound"] = \
|
||||
self.results["Upper Bound"] / best_upper_bound
|
||||
self.results["Relative Wallclock Time"] = \
|
||||
self.results["Wallclock Time"] / best_wallclock_time
|
||||
self.results["Relative Gap"] = \
|
||||
self.results["Gap"] / best_gap
|
||||
self.results["Relative Nodes"] = \
|
||||
self.results["Nodes"] / best_nodes
|
||||
|
||||
def raw_results(self):
|
||||
return self.results
|
||||
|
||||
Reference in New Issue
Block a user