|
|
|
@ -3,19 +3,21 @@
|
|
|
|
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
|
|
|
|
|
|
|
|
|
from .transformers import PerVariableTransformer
|
|
|
|
|
from .warmstart import KnnWarmStartPredictor
|
|
|
|
|
from .warmstart import KnnWarmStartPredictor, LogisticWarmStartPredictor
|
|
|
|
|
import pyomo.environ as pe
|
|
|
|
|
import numpy as np
|
|
|
|
|
from copy import copy, deepcopy
|
|
|
|
|
import pickle
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
from joblib import Parallel, delayed
|
|
|
|
|
from scipy.stats import randint
|
|
|
|
|
import multiprocessing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _gurobi_factory():
|
|
|
|
|
solver = pe.SolverFactory('gurobi_persistent')
|
|
|
|
|
solver.options["threads"] = 4
|
|
|
|
|
solver.options["Seed"] = randint(low=0, high=1000).rvs()
|
|
|
|
|
return solver
|
|
|
|
|
|
|
|
|
|
class LearningSolver:
|
|
|
|
@ -27,7 +29,8 @@ class LearningSolver:
|
|
|
|
|
def __init__(self,
|
|
|
|
|
threads=4,
|
|
|
|
|
internal_solver_factory=_gurobi_factory,
|
|
|
|
|
ws_predictor=KnnWarmStartPredictor(),
|
|
|
|
|
ws_predictor=LogisticWarmStartPredictor(),
|
|
|
|
|
branch_priority=None,
|
|
|
|
|
mode="exact"):
|
|
|
|
|
self.internal_solver_factory = internal_solver_factory
|
|
|
|
|
self.internal_solver = self.internal_solver_factory()
|
|
|
|
@ -36,10 +39,14 @@ class LearningSolver:
|
|
|
|
|
self.y_train = {}
|
|
|
|
|
self.ws_predictors = {}
|
|
|
|
|
self.ws_predictor_prototype = ws_predictor
|
|
|
|
|
self.branch_priority = branch_priority
|
|
|
|
|
|
|
|
|
|
def solve(self, instance, tee=False):
|
|
|
|
|
# Convert instance into concrete model
|
|
|
|
|
# Load model into solver
|
|
|
|
|
model = instance.to_model()
|
|
|
|
|
is_solver_persistent = hasattr(self.internal_solver, "set_instance")
|
|
|
|
|
if is_solver_persistent:
|
|
|
|
|
self.internal_solver.set_instance(model)
|
|
|
|
|
|
|
|
|
|
# Split decision variables according to their category
|
|
|
|
|
transformer = PerVariableTransformer()
|
|
|
|
@ -56,10 +63,11 @@ class LearningSolver:
|
|
|
|
|
else:
|
|
|
|
|
self.x_train[category] = np.vstack([self.x_train[category], x])
|
|
|
|
|
|
|
|
|
|
# Predict warm start
|
|
|
|
|
for category in var_split.keys():
|
|
|
|
|
if category in self.ws_predictors.keys():
|
|
|
|
|
var_index_pairs = var_split[category]
|
|
|
|
|
|
|
|
|
|
# Predict warm starts
|
|
|
|
|
if category in self.ws_predictors.keys():
|
|
|
|
|
ws = self.ws_predictors[category].predict(x_test[category])
|
|
|
|
|
assert ws.shape == (len(var_index_pairs), 2)
|
|
|
|
|
for i in range(len(var_index_pairs)):
|
|
|
|
@ -75,8 +83,22 @@ class LearningSolver:
|
|
|
|
|
elif ws[i,1] == 1:
|
|
|
|
|
var[index].value = 1
|
|
|
|
|
|
|
|
|
|
# Solve MILP
|
|
|
|
|
solve_results = self._solve(model, tee=tee)
|
|
|
|
|
# Set custom branch priority
|
|
|
|
|
if self.branch_priority is not None:
|
|
|
|
|
assert is_solver_persistent
|
|
|
|
|
from gurobipy import GRB
|
|
|
|
|
for (i, (var, index)) in enumerate(var_index_pairs):
|
|
|
|
|
gvar = self.internal_solver._pyomo_var_to_solver_var_map[var[index]]
|
|
|
|
|
#priority = randint(low=0, high=1000).rvs()
|
|
|
|
|
gvar.setAttr(GRB.Attr.BranchPriority, self.branch_priority[index])
|
|
|
|
|
|
|
|
|
|
if is_solver_persistent:
|
|
|
|
|
solve_results = self.internal_solver.solve(tee=tee, warmstart=True)
|
|
|
|
|
else:
|
|
|
|
|
solve_results = self.internal_solver.solve(model, tee=tee, warmstart=True)
|
|
|
|
|
|
|
|
|
|
solve_results["Solver"][0]["Nodes"] = self.internal_solver._solver_model.getAttr("NodeCount")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Update y_train
|
|
|
|
|
for category in var_split.keys():
|
|
|
|
@ -113,7 +135,7 @@ class LearningSolver:
|
|
|
|
|
|
|
|
|
|
results = Parallel(n_jobs=n_jobs)(
|
|
|
|
|
delayed(_process)(instance)
|
|
|
|
|
for instance in tqdm(instances, desc=label)
|
|
|
|
|
for instance in tqdm(instances, desc=label, ncols=80)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
x_train, y_train, results = _merge(results)
|
|
|
|
@ -148,10 +170,3 @@ class LearningSolver:
|
|
|
|
|
self.x_train = data["x_train"]
|
|
|
|
|
self.y_train = data["y_train"]
|
|
|
|
|
self.ws_predictors = self.ws_predictors
|
|
|
|
|
|
|
|
|
|
def _solve(self, model, tee=False):
|
|
|
|
|
if hasattr(self.internal_solver, "set_instance"):
|
|
|
|
|
self.internal_solver.set_instance(model)
|
|
|
|
|
return self.internal_solver.solve(tee=tee, warmstart=True)
|
|
|
|
|
else:
|
|
|
|
|
return self.internal_solver.solve(model, tee=tee, warmstart=True)
|
|
|
|
|