|
|
@ -13,28 +13,55 @@ import logging
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _solver_factory():
|
|
|
|
class GurobiSolver:
|
|
|
|
try:
|
|
|
|
def __init__(self):
|
|
|
|
solver = pe.SolverFactory('gurobi_persistent')
|
|
|
|
self.solver = pe.SolverFactory('gurobi_persistent')
|
|
|
|
assert solver.available()
|
|
|
|
self.solver.options["Seed"] = randint(low=0, high=1000).rvs()
|
|
|
|
solver.options["threads"] = 4
|
|
|
|
|
|
|
|
solver.options["Seed"] = randint(low=0, high=1000).rvs()
|
|
|
|
def set_threads(self, threads):
|
|
|
|
return solver
|
|
|
|
self.solver.options["Threads"] = threads
|
|
|
|
except Exception as e:
|
|
|
|
|
|
|
|
logger.debug(e)
|
|
|
|
def set_time_limit(self, time_limit):
|
|
|
|
pass
|
|
|
|
self.solver.options["TimeLimit"] = time_limit
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
def set_gap_tolerance(self, gap_tolerance):
|
|
|
|
solver = pe.SolverFactory('cplex_persistent')
|
|
|
|
self.solver.options["MIPGap"] = gap_tolerance
|
|
|
|
assert solver.available()
|
|
|
|
|
|
|
|
solver.options["threads"] = 4
|
|
|
|
def solve(self, model, tee=False, warmstart=False):
|
|
|
|
solver.options["randomseed"] = randint(low=0, high=1000).rvs()
|
|
|
|
self.solver.set_instance(model)
|
|
|
|
return solver
|
|
|
|
results = self.solver.solve(tee=tee, warmstart=warmstart)
|
|
|
|
except Exception as e:
|
|
|
|
return {
|
|
|
|
logger.debug(e)
|
|
|
|
"Lower bound": results["Problem"][0]["Lower bound"],
|
|
|
|
pass
|
|
|
|
"Upper bound": results["Problem"][0]["Upper bound"],
|
|
|
|
|
|
|
|
"Wallclock time": results["Solver"][0]["Wallclock time"],
|
|
|
|
|
|
|
|
"Nodes": self.solver._solver_model.getAttr("NodeCount"),
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
raise Exception("No solver available")
|
|
|
|
class CPLEXSolver:
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
|
|
|
self.solver = pe.SolverFactory('cplex_persistent')
|
|
|
|
|
|
|
|
self.solver.options["randomseed"] = randint(low=0, high=1000).rvs()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def set_threads(self, threads):
|
|
|
|
|
|
|
|
self.solver.options["threads"] = threads
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def set_time_limit(self, time_limit):
|
|
|
|
|
|
|
|
self.solver.options["timelimit"] = time_limit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def set_gap_tolerance(self, gap_tolerance):
|
|
|
|
|
|
|
|
self.solver.options["mip_tolerances_mipgap"] = gap_tolerance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def solve(self, model, tee=False, warmstart=False):
|
|
|
|
|
|
|
|
self.solver.set_instance(model)
|
|
|
|
|
|
|
|
results = self.solver.solve(tee=tee, warmstart=warmstart)
|
|
|
|
|
|
|
|
print(results)
|
|
|
|
|
|
|
|
return {
|
|
|
|
|
|
|
|
"Lower bound": results["Problem"][0]["Lower bound"],
|
|
|
|
|
|
|
|
"Upper bound": results["Problem"][0]["Upper bound"],
|
|
|
|
|
|
|
|
"Wallclock time": results["Solver"][0]["Wallclock time"],
|
|
|
|
|
|
|
|
"Nodes": 1,
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LearningSolver:
|
|
|
|
class LearningSolver:
|
|
|
@ -44,21 +71,23 @@ class LearningSolver:
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
def __init__(self,
|
|
|
|
threads=None,
|
|
|
|
|
|
|
|
time_limit=None,
|
|
|
|
|
|
|
|
gap_limit=None,
|
|
|
|
|
|
|
|
internal_solver_factory=_solver_factory,
|
|
|
|
|
|
|
|
components=None,
|
|
|
|
components=None,
|
|
|
|
mode="exact"):
|
|
|
|
gap_tolerance=None,
|
|
|
|
|
|
|
|
mode="exact",
|
|
|
|
|
|
|
|
solver="cplex",
|
|
|
|
|
|
|
|
threads=4,
|
|
|
|
|
|
|
|
time_limit=None,
|
|
|
|
|
|
|
|
):
|
|
|
|
|
|
|
|
|
|
|
|
self.is_persistent = None
|
|
|
|
self.is_persistent = None
|
|
|
|
self.internal_solver = None
|
|
|
|
|
|
|
|
self.components = components
|
|
|
|
self.components = components
|
|
|
|
self.internal_solver_factory = internal_solver_factory
|
|
|
|
self.mode = mode
|
|
|
|
|
|
|
|
self.internal_solver = None
|
|
|
|
|
|
|
|
self.internal_solver_factory = solver
|
|
|
|
self.threads = threads
|
|
|
|
self.threads = threads
|
|
|
|
self.time_limit = time_limit
|
|
|
|
self.time_limit = time_limit
|
|
|
|
self.gap_limit = gap_limit
|
|
|
|
self.gap_tolerance = gap_tolerance
|
|
|
|
self.tee = False
|
|
|
|
self.tee = False
|
|
|
|
self.mode = mode
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.components is not None:
|
|
|
|
if self.components is not None:
|
|
|
|
assert isinstance(self.components, dict)
|
|
|
|
assert isinstance(self.components, dict)
|
|
|
@ -71,23 +100,25 @@ class LearningSolver:
|
|
|
|
for component in self.components.values():
|
|
|
|
for component in self.components.values():
|
|
|
|
component.mode = self.mode
|
|
|
|
component.mode = self.mode
|
|
|
|
|
|
|
|
|
|
|
|
def _create_solver(self):
|
|
|
|
def _create_internal_solver(self):
|
|
|
|
self.internal_solver = self.internal_solver_factory()
|
|
|
|
if self.internal_solver_factory == "cplex":
|
|
|
|
self.is_persistent = hasattr(self.internal_solver, "set_instance")
|
|
|
|
solver = CPLEXSolver()
|
|
|
|
if self.threads is not None:
|
|
|
|
elif self.internal_solver_factory == "gurobi":
|
|
|
|
self.internal_solver.options["Threads"] = self.threads
|
|
|
|
solver = GurobiSolver()
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
raise Exception("solver %s not supported" % solver_factory)
|
|
|
|
|
|
|
|
solver.set_threads(self.threads)
|
|
|
|
if self.time_limit is not None:
|
|
|
|
if self.time_limit is not None:
|
|
|
|
self.internal_solver.options["timelimit"] = self.time_limit
|
|
|
|
solver.set_time_limit(self.time_limit)
|
|
|
|
if self.gap_limit is not None:
|
|
|
|
if self.gap_tolerance is not None:
|
|
|
|
self.internal_solver.options["MIPGap"] = self.gap_limit
|
|
|
|
solver.set_gap_tolerance(self.gap_tolerance)
|
|
|
|
|
|
|
|
return solver
|
|
|
|
|
|
|
|
|
|
|
|
def solve(self, instance, tee=False):
|
|
|
|
def solve(self, instance, tee=False):
|
|
|
|
model = instance.to_model()
|
|
|
|
model = instance.to_model()
|
|
|
|
self.tee = tee
|
|
|
|
self.tee = tee
|
|
|
|
|
|
|
|
|
|
|
|
self._create_solver()
|
|
|
|
self.internal_solver = self._create_internal_solver()
|
|
|
|
if self.is_persistent:
|
|
|
|
|
|
|
|
self.internal_solver.set_instance(model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for component in self.components.values():
|
|
|
|
for component in self.components.values():
|
|
|
|
component.before_solve(self, instance, model)
|
|
|
|
component.before_solve(self, instance, model)
|
|
|
@ -96,28 +127,24 @@ class LearningSolver:
|
|
|
|
if "warm-start" in self.components.keys():
|
|
|
|
if "warm-start" in self.components.keys():
|
|
|
|
if self.components["warm-start"].is_warm_start_available:
|
|
|
|
if self.components["warm-start"].is_warm_start_available:
|
|
|
|
is_warm_start_available = True
|
|
|
|
is_warm_start_available = True
|
|
|
|
if self.is_persistent:
|
|
|
|
|
|
|
|
solve_results = self.internal_solver.solve(tee=tee, warmstart=is_warm_start_available)
|
|
|
|
results = self.internal_solver.solve(model,
|
|
|
|
else:
|
|
|
|
tee=tee,
|
|
|
|
solve_results = self.internal_solver.solve(model, tee=tee, warmstart=is_warm_start_available)
|
|
|
|
warmstart=is_warm_start_available)
|
|
|
|
|
|
|
|
|
|
|
|
instance.solution = {}
|
|
|
|
instance.solution = {}
|
|
|
|
instance.lower_bound = solve_results["Problem"][0]["Lower bound"]
|
|
|
|
instance.lower_bound = results["Lower bound"]
|
|
|
|
instance.upper_bound = solve_results["Problem"][0]["Upper bound"]
|
|
|
|
instance.upper_bound = results["Upper bound"]
|
|
|
|
|
|
|
|
|
|
|
|
for var in model.component_objects(Var):
|
|
|
|
for var in model.component_objects(Var):
|
|
|
|
instance.solution[str(var)] = {}
|
|
|
|
instance.solution[str(var)] = {}
|
|
|
|
for index in var:
|
|
|
|
for index in var:
|
|
|
|
instance.solution[str(var)][index] = var[index].value
|
|
|
|
instance.solution[str(var)][index] = var[index].value
|
|
|
|
|
|
|
|
|
|
|
|
if self.internal_solver.name == "gurobi_persistent":
|
|
|
|
|
|
|
|
solve_results["Solver"][0]["Nodes"] = self.internal_solver._solver_model.getAttr("NodeCount")
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
solve_results["Solver"][0]["Nodes"] = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for component in self.components.values():
|
|
|
|
for component in self.components.values():
|
|
|
|
component.after_solve(self, instance, model)
|
|
|
|
component.after_solve(self, instance, model)
|
|
|
|
|
|
|
|
|
|
|
|
return solve_results
|
|
|
|
return results
|
|
|
|
|
|
|
|
|
|
|
|
def parallel_solve(self,
|
|
|
|
def parallel_solve(self,
|
|
|
|
instances,
|
|
|
|
instances,
|
|
|
@ -134,21 +161,21 @@ class LearningSolver:
|
|
|
|
if not collect_training_data:
|
|
|
|
if not collect_training_data:
|
|
|
|
solver.components = {}
|
|
|
|
solver.components = {}
|
|
|
|
return {
|
|
|
|
return {
|
|
|
|
"solver": solver,
|
|
|
|
"Solver": solver,
|
|
|
|
"results": results,
|
|
|
|
"Results": results,
|
|
|
|
"solution": instance.solution,
|
|
|
|
"Solution": instance.solution,
|
|
|
|
"upper bound": instance.upper_bound,
|
|
|
|
"Upper bound": instance.upper_bound,
|
|
|
|
"lower bound": instance.lower_bound,
|
|
|
|
"Lower bound": instance.lower_bound,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
p_map_results = p_map(_process, instances, num_cpus=n_jobs, desc=label)
|
|
|
|
p_map_results = p_map(_process, instances, num_cpus=n_jobs, desc=label)
|
|
|
|
subsolvers = [p["solver"] for p in p_map_results]
|
|
|
|
subsolvers = [p["Solver"] for p in p_map_results]
|
|
|
|
results = [p["results"] for p in p_map_results]
|
|
|
|
results = [p["Results"] for p in p_map_results]
|
|
|
|
|
|
|
|
|
|
|
|
for (idx, r) in enumerate(p_map_results):
|
|
|
|
for (idx, r) in enumerate(p_map_results):
|
|
|
|
instances[idx].solution = r["solution"]
|
|
|
|
instances[idx].solution = r["Solution"]
|
|
|
|
instances[idx].lower_bound = r["lower bound"]
|
|
|
|
instances[idx].lower_bound = r["Lower bound"]
|
|
|
|
instances[idx].upper_bound = r["upper bound"]
|
|
|
|
instances[idx].upper_bound = r["Upper bound"]
|
|
|
|
|
|
|
|
|
|
|
|
for (name, component) in self.components.items():
|
|
|
|
for (name, component) in self.components.items():
|
|
|
|
subcomponents = [subsolver.components[name]
|
|
|
|
subcomponents = [subsolver.components[name]
|
|
|
|