mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Better encapsulate solvers
This commit is contained in:
@@ -61,25 +61,17 @@ class BenchmarkRunner:
|
||||
"Nodes",
|
||||
"Mode",
|
||||
])
|
||||
wallclock_time = None
|
||||
for key in ["Time", "Wall time", "Wallclock time"]:
|
||||
if key not in result["Solver"][0].keys():
|
||||
continue
|
||||
if str(result["Solver"][0][key]) == "<undefined>":
|
||||
continue
|
||||
wallclock_time = float(result["Solver"][0][key])
|
||||
nodes = result["Solver"][0]["Nodes"]
|
||||
lb = result["Problem"][0]["Lower bound"]
|
||||
ub = result["Problem"][0]["Upper bound"]
|
||||
lb = result["Lower bound"]
|
||||
ub = result["Upper bound"]
|
||||
gap = (ub - lb) / lb
|
||||
self.results = self.results.append({
|
||||
"Solver": name,
|
||||
"Instance": instance,
|
||||
"Wallclock Time": wallclock_time,
|
||||
"Wallclock Time": result["Wallclock time"],
|
||||
"Lower Bound": lb,
|
||||
"Upper Bound": ub,
|
||||
"Gap": gap,
|
||||
"Nodes": nodes,
|
||||
"Nodes": result["Nodes"],
|
||||
"Mode": solver.mode,
|
||||
}, ignore_index=True)
|
||||
groups = self.results.groupby("Instance")
|
||||
|
||||
@@ -13,28 +13,55 @@ import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _solver_factory():
|
||||
try:
|
||||
solver = pe.SolverFactory('gurobi_persistent')
|
||||
assert solver.available()
|
||||
solver.options["threads"] = 4
|
||||
solver.options["Seed"] = randint(low=0, high=1000).rvs()
|
||||
return solver
|
||||
except Exception as e:
|
||||
logger.debug(e)
|
||||
pass
|
||||
class GurobiSolver:
|
||||
def __init__(self):
|
||||
self.solver = pe.SolverFactory('gurobi_persistent')
|
||||
self.solver.options["Seed"] = randint(low=0, high=1000).rvs()
|
||||
|
||||
def set_threads(self, threads):
|
||||
self.solver.options["Threads"] = threads
|
||||
|
||||
def set_time_limit(self, time_limit):
|
||||
self.solver.options["TimeLimit"] = time_limit
|
||||
|
||||
def set_gap_tolerance(self, gap_tolerance):
|
||||
self.solver.options["MIPGap"] = gap_tolerance
|
||||
|
||||
def solve(self, model, tee=False, warmstart=False):
|
||||
self.solver.set_instance(model)
|
||||
results = self.solver.solve(tee=tee, warmstart=warmstart)
|
||||
return {
|
||||
"Lower bound": results["Problem"][0]["Lower bound"],
|
||||
"Upper bound": results["Problem"][0]["Upper bound"],
|
||||
"Wallclock time": results["Solver"][0]["Wallclock time"],
|
||||
"Nodes": self.solver._solver_model.getAttr("NodeCount"),
|
||||
}
|
||||
|
||||
try:
|
||||
solver = pe.SolverFactory('cplex_persistent')
|
||||
assert solver.available()
|
||||
solver.options["threads"] = 4
|
||||
solver.options["randomseed"] = randint(low=0, high=1000).rvs()
|
||||
return solver
|
||||
except Exception as e:
|
||||
logger.debug(e)
|
||||
pass
|
||||
|
||||
raise Exception("No solver available")
|
||||
|
||||
class CPLEXSolver:
|
||||
def __init__(self):
|
||||
self.solver = pe.SolverFactory('cplex_persistent')
|
||||
self.solver.options["randomseed"] = randint(low=0, high=1000).rvs()
|
||||
|
||||
def set_threads(self, threads):
|
||||
self.solver.options["threads"] = threads
|
||||
|
||||
def set_time_limit(self, time_limit):
|
||||
self.solver.options["timelimit"] = time_limit
|
||||
|
||||
def set_gap_tolerance(self, gap_tolerance):
|
||||
self.solver.options["mip_tolerances_mipgap"] = gap_tolerance
|
||||
|
||||
def solve(self, model, tee=False, warmstart=False):
|
||||
self.solver.set_instance(model)
|
||||
results = self.solver.solve(tee=tee, warmstart=warmstart)
|
||||
print(results)
|
||||
return {
|
||||
"Lower bound": results["Problem"][0]["Lower bound"],
|
||||
"Upper bound": results["Problem"][0]["Upper bound"],
|
||||
"Wallclock time": results["Solver"][0]["Wallclock time"],
|
||||
"Nodes": 1,
|
||||
}
|
||||
|
||||
|
||||
class LearningSolver:
|
||||
@@ -44,21 +71,23 @@ class LearningSolver:
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
threads=None,
|
||||
time_limit=None,
|
||||
gap_limit=None,
|
||||
internal_solver_factory=_solver_factory,
|
||||
components=None,
|
||||
mode="exact"):
|
||||
gap_tolerance=None,
|
||||
mode="exact",
|
||||
solver="cplex",
|
||||
threads=4,
|
||||
time_limit=None,
|
||||
):
|
||||
|
||||
self.is_persistent = None
|
||||
self.internal_solver = None
|
||||
self.components = components
|
||||
self.internal_solver_factory = internal_solver_factory
|
||||
self.mode = mode
|
||||
self.internal_solver = None
|
||||
self.internal_solver_factory = solver
|
||||
self.threads = threads
|
||||
self.time_limit = time_limit
|
||||
self.gap_limit = gap_limit
|
||||
self.gap_tolerance = gap_tolerance
|
||||
self.tee = False
|
||||
self.mode = mode
|
||||
|
||||
if self.components is not None:
|
||||
assert isinstance(self.components, dict)
|
||||
@@ -71,23 +100,25 @@ class LearningSolver:
|
||||
for component in self.components.values():
|
||||
component.mode = self.mode
|
||||
|
||||
def _create_solver(self):
|
||||
self.internal_solver = self.internal_solver_factory()
|
||||
self.is_persistent = hasattr(self.internal_solver, "set_instance")
|
||||
if self.threads is not None:
|
||||
self.internal_solver.options["Threads"] = self.threads
|
||||
def _create_internal_solver(self):
|
||||
if self.internal_solver_factory == "cplex":
|
||||
solver = CPLEXSolver()
|
||||
elif self.internal_solver_factory == "gurobi":
|
||||
solver = GurobiSolver()
|
||||
else:
|
||||
raise Exception("solver %s not supported" % solver_factory)
|
||||
solver.set_threads(self.threads)
|
||||
if self.time_limit is not None:
|
||||
self.internal_solver.options["timelimit"] = self.time_limit
|
||||
if self.gap_limit is not None:
|
||||
self.internal_solver.options["MIPGap"] = self.gap_limit
|
||||
solver.set_time_limit(self.time_limit)
|
||||
if self.gap_tolerance is not None:
|
||||
solver.set_gap_tolerance(self.gap_tolerance)
|
||||
return solver
|
||||
|
||||
def solve(self, instance, tee=False):
|
||||
model = instance.to_model()
|
||||
self.tee = tee
|
||||
|
||||
self._create_solver()
|
||||
if self.is_persistent:
|
||||
self.internal_solver.set_instance(model)
|
||||
self.internal_solver = self._create_internal_solver()
|
||||
|
||||
for component in self.components.values():
|
||||
component.before_solve(self, instance, model)
|
||||
@@ -96,28 +127,24 @@ class LearningSolver:
|
||||
if "warm-start" in self.components.keys():
|
||||
if self.components["warm-start"].is_warm_start_available:
|
||||
is_warm_start_available = True
|
||||
if self.is_persistent:
|
||||
solve_results = self.internal_solver.solve(tee=tee, warmstart=is_warm_start_available)
|
||||
else:
|
||||
solve_results = self.internal_solver.solve(model, tee=tee, warmstart=is_warm_start_available)
|
||||
|
||||
results = self.internal_solver.solve(model,
|
||||
tee=tee,
|
||||
warmstart=is_warm_start_available)
|
||||
|
||||
instance.solution = {}
|
||||
instance.lower_bound = solve_results["Problem"][0]["Lower bound"]
|
||||
instance.upper_bound = solve_results["Problem"][0]["Upper bound"]
|
||||
instance.lower_bound = results["Lower bound"]
|
||||
instance.upper_bound = results["Upper bound"]
|
||||
|
||||
for var in model.component_objects(Var):
|
||||
instance.solution[str(var)] = {}
|
||||
for index in var:
|
||||
instance.solution[str(var)][index] = var[index].value
|
||||
|
||||
if self.internal_solver.name == "gurobi_persistent":
|
||||
solve_results["Solver"][0]["Nodes"] = self.internal_solver._solver_model.getAttr("NodeCount")
|
||||
else:
|
||||
solve_results["Solver"][0]["Nodes"] = 1
|
||||
|
||||
for component in self.components.values():
|
||||
component.after_solve(self, instance, model)
|
||||
|
||||
return solve_results
|
||||
return results
|
||||
|
||||
def parallel_solve(self,
|
||||
instances,
|
||||
@@ -134,21 +161,21 @@ class LearningSolver:
|
||||
if not collect_training_data:
|
||||
solver.components = {}
|
||||
return {
|
||||
"solver": solver,
|
||||
"results": results,
|
||||
"solution": instance.solution,
|
||||
"upper bound": instance.upper_bound,
|
||||
"lower bound": instance.lower_bound,
|
||||
"Solver": solver,
|
||||
"Results": results,
|
||||
"Solution": instance.solution,
|
||||
"Upper bound": instance.upper_bound,
|
||||
"Lower bound": instance.lower_bound,
|
||||
}
|
||||
|
||||
p_map_results = p_map(_process, instances, num_cpus=n_jobs, desc=label)
|
||||
subsolvers = [p["solver"] for p in p_map_results]
|
||||
results = [p["results"] for p in p_map_results]
|
||||
subsolvers = [p["Solver"] for p in p_map_results]
|
||||
results = [p["Results"] for p in p_map_results]
|
||||
|
||||
for (idx, r) in enumerate(p_map_results):
|
||||
instances[idx].solution = r["solution"]
|
||||
instances[idx].lower_bound = r["lower bound"]
|
||||
instances[idx].upper_bound = r["upper bound"]
|
||||
instances[idx].solution = r["Solution"]
|
||||
instances[idx].lower_bound = r["Lower bound"]
|
||||
instances[idx].upper_bound = r["Upper bound"]
|
||||
|
||||
for (name, component) in self.components.items():
|
||||
subcomponents = [subsolver.components[name]
|
||||
|
||||
@@ -16,17 +16,21 @@ def _get_instance():
|
||||
|
||||
def test_solver():
|
||||
instance = _get_instance()
|
||||
solver = LearningSolver()
|
||||
solver.solve(instance)
|
||||
assert instance.solution["x"][0] == 1.0
|
||||
assert instance.solution["x"][1] == 0.0
|
||||
assert instance.solution["x"][2] == 1.0
|
||||
assert instance.solution["x"][3] == 1.0
|
||||
assert instance.lower_bound == 1183.0
|
||||
assert instance.upper_bound == 1183.0
|
||||
|
||||
solver.fit()
|
||||
solver.solve(instance)
|
||||
for internal_solver in ["cplex", "gurobi"]:
|
||||
solver = LearningSolver(time_limit=300,
|
||||
gap_tolerance=1e-3,
|
||||
threads=1,
|
||||
solver=internal_solver,
|
||||
)
|
||||
results = solver.solve(instance)
|
||||
assert instance.solution["x"][0] == 1.0
|
||||
assert instance.solution["x"][1] == 0.0
|
||||
assert instance.solution["x"][2] == 1.0
|
||||
assert instance.solution["x"][3] == 1.0
|
||||
assert instance.lower_bound == 1183.0
|
||||
assert instance.upper_bound == 1183.0
|
||||
solver.fit()
|
||||
solver.solve(instance)
|
||||
|
||||
|
||||
def test_solve_save_load_state():
|
||||
|
||||
Reference in New Issue
Block a user