mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-08 18:38:51 -06:00
Move tests to separate folder
This commit is contained in:
123
tests/components/steps/test_convert_tight.py
Normal file
123
tests/components/steps/test_convert_tight.py
Normal file
@@ -0,0 +1,123 @@
|
||||
from unittest.mock import Mock
|
||||
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.components.steps.convert_tight import ConvertTightIneqsIntoEqsStep
|
||||
from miplearn.components.steps.relax_integrality import RelaxIntegralityStep
|
||||
from miplearn.instance import Instance
|
||||
from miplearn.problems.knapsack import GurobiKnapsackInstance
|
||||
from miplearn.solvers.gurobi import GurobiSolver
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
|
||||
|
||||
def test_convert_tight_usage():
|
||||
instance = GurobiKnapsackInstance(
|
||||
weights=[3.0, 5.0, 10.0],
|
||||
prices=[1.0, 1.0, 1.0],
|
||||
capacity=16.0,
|
||||
)
|
||||
solver = LearningSolver(
|
||||
solver=GurobiSolver,
|
||||
components=[
|
||||
RelaxIntegralityStep(),
|
||||
ConvertTightIneqsIntoEqsStep(),
|
||||
],
|
||||
)
|
||||
|
||||
# Solve original problem
|
||||
stats = solver.solve(instance)
|
||||
original_upper_bound = stats["Upper bound"]
|
||||
|
||||
# Should collect training data
|
||||
assert instance.training_data[0]["slacks"]["eq_capacity"] == 0.0
|
||||
|
||||
# Fit and resolve
|
||||
solver.fit([instance])
|
||||
stats = solver.solve(instance)
|
||||
|
||||
# Objective value should be the same
|
||||
assert stats["Upper bound"] == original_upper_bound
|
||||
assert stats["ConvertTight: Inf iterations"] == 0
|
||||
assert stats["ConvertTight: Subopt iterations"] == 0
|
||||
|
||||
|
||||
class SampleInstance(Instance):
|
||||
def to_model(self):
|
||||
import gurobipy as grb
|
||||
|
||||
m = grb.Model("model")
|
||||
x1 = m.addVar(name="x1")
|
||||
x2 = m.addVar(name="x2")
|
||||
m.setObjective(x1 + 2 * x2, grb.GRB.MAXIMIZE)
|
||||
m.addConstr(x1 <= 2, name="c1")
|
||||
m.addConstr(x2 <= 2, name="c2")
|
||||
m.addConstr(x1 + x2 <= 3, name="c2")
|
||||
return m
|
||||
|
||||
|
||||
def test_convert_tight_infeasibility():
|
||||
comp = ConvertTightIneqsIntoEqsStep()
|
||||
comp.classifiers = {
|
||||
"c1": Mock(spec=Classifier),
|
||||
"c2": Mock(spec=Classifier),
|
||||
"c3": Mock(spec=Classifier),
|
||||
}
|
||||
comp.classifiers["c1"].predict_proba = Mock(return_value=[[0, 1]])
|
||||
comp.classifiers["c2"].predict_proba = Mock(return_value=[[0, 1]])
|
||||
comp.classifiers["c3"].predict_proba = Mock(return_value=[[1, 0]])
|
||||
|
||||
solver = LearningSolver(
|
||||
solver=GurobiSolver,
|
||||
components=[comp],
|
||||
solve_lp_first=False,
|
||||
)
|
||||
instance = SampleInstance()
|
||||
stats = solver.solve(instance)
|
||||
assert stats["Upper bound"] == 5.0
|
||||
assert stats["ConvertTight: Inf iterations"] == 1
|
||||
assert stats["ConvertTight: Subopt iterations"] == 0
|
||||
|
||||
|
||||
def test_convert_tight_suboptimality():
|
||||
comp = ConvertTightIneqsIntoEqsStep(check_optimality=True)
|
||||
comp.classifiers = {
|
||||
"c1": Mock(spec=Classifier),
|
||||
"c2": Mock(spec=Classifier),
|
||||
"c3": Mock(spec=Classifier),
|
||||
}
|
||||
comp.classifiers["c1"].predict_proba = Mock(return_value=[[0, 1]])
|
||||
comp.classifiers["c2"].predict_proba = Mock(return_value=[[1, 0]])
|
||||
comp.classifiers["c3"].predict_proba = Mock(return_value=[[0, 1]])
|
||||
|
||||
solver = LearningSolver(
|
||||
solver=GurobiSolver,
|
||||
components=[comp],
|
||||
solve_lp_first=False,
|
||||
)
|
||||
instance = SampleInstance()
|
||||
stats = solver.solve(instance)
|
||||
assert stats["Upper bound"] == 5.0
|
||||
assert stats["ConvertTight: Inf iterations"] == 0
|
||||
assert stats["ConvertTight: Subopt iterations"] == 1
|
||||
|
||||
|
||||
def test_convert_tight_optimal():
|
||||
comp = ConvertTightIneqsIntoEqsStep()
|
||||
comp.classifiers = {
|
||||
"c1": Mock(spec=Classifier),
|
||||
"c2": Mock(spec=Classifier),
|
||||
"c3": Mock(spec=Classifier),
|
||||
}
|
||||
comp.classifiers["c1"].predict_proba = Mock(return_value=[[1, 0]])
|
||||
comp.classifiers["c2"].predict_proba = Mock(return_value=[[0, 1]])
|
||||
comp.classifiers["c3"].predict_proba = Mock(return_value=[[0, 1]])
|
||||
|
||||
solver = LearningSolver(
|
||||
solver=GurobiSolver,
|
||||
components=[comp],
|
||||
solve_lp_first=False,
|
||||
)
|
||||
instance = SampleInstance()
|
||||
stats = solver.solve(instance)
|
||||
assert stats["Upper bound"] == 5.0
|
||||
assert stats["ConvertTight: Inf iterations"] == 0
|
||||
assert stats["ConvertTight: Subopt iterations"] == 0
|
||||
Reference in New Issue
Block a user