mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-08 02:18:51 -06:00
Move tests to separate folder
This commit is contained in:
111
tests/components/test_primal.py
Normal file
111
tests/components/test_primal.py
Normal file
@@ -0,0 +1,111 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from unittest.mock import Mock
|
||||
|
||||
import numpy as np
|
||||
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.components.primal import PrimalSolutionComponent
|
||||
from .. import get_test_pyomo_instances
|
||||
|
||||
|
||||
def test_predict():
|
||||
instances, models = get_test_pyomo_instances()
|
||||
comp = PrimalSolutionComponent()
|
||||
comp.fit(instances)
|
||||
solution = comp.predict(instances[0])
|
||||
assert "x" in solution
|
||||
assert 0 in solution["x"]
|
||||
assert 1 in solution["x"]
|
||||
assert 2 in solution["x"]
|
||||
assert 3 in solution["x"]
|
||||
|
||||
|
||||
def test_evaluate():
|
||||
instances, models = get_test_pyomo_instances()
|
||||
clf_zero = Mock(spec=Classifier)
|
||||
clf_zero.predict_proba = Mock(
|
||||
return_value=np.array(
|
||||
[
|
||||
[0.0, 1.0], # x[0]
|
||||
[0.0, 1.0], # x[1]
|
||||
[1.0, 0.0], # x[2]
|
||||
[1.0, 0.0], # x[3]
|
||||
]
|
||||
)
|
||||
)
|
||||
clf_one = Mock(spec=Classifier)
|
||||
clf_one.predict_proba = Mock(
|
||||
return_value=np.array(
|
||||
[
|
||||
[1.0, 0.0], # x[0] instances[0]
|
||||
[1.0, 0.0], # x[1] instances[0]
|
||||
[0.0, 1.0], # x[2] instances[0]
|
||||
[1.0, 0.0], # x[3] instances[0]
|
||||
]
|
||||
)
|
||||
)
|
||||
comp = PrimalSolutionComponent(classifier=[clf_zero, clf_one], threshold=0.50)
|
||||
comp.fit(instances[:1])
|
||||
assert comp.predict(instances[0]) == {"x": {0: 0, 1: 0, 2: 1, 3: None}}
|
||||
assert instances[0].training_data[0]["Solution"] == {"x": {0: 1, 1: 0, 2: 1, 3: 1}}
|
||||
ev = comp.evaluate(instances[:1])
|
||||
assert ev == {
|
||||
"Fix one": {
|
||||
0: {
|
||||
"Accuracy": 0.5,
|
||||
"Condition negative": 1,
|
||||
"Condition negative (%)": 25.0,
|
||||
"Condition positive": 3,
|
||||
"Condition positive (%)": 75.0,
|
||||
"F1 score": 0.5,
|
||||
"False negative": 2,
|
||||
"False negative (%)": 50.0,
|
||||
"False positive": 0,
|
||||
"False positive (%)": 0.0,
|
||||
"Precision": 1.0,
|
||||
"Predicted negative": 3,
|
||||
"Predicted negative (%)": 75.0,
|
||||
"Predicted positive": 1,
|
||||
"Predicted positive (%)": 25.0,
|
||||
"Recall": 0.3333333333333333,
|
||||
"True negative": 1,
|
||||
"True negative (%)": 25.0,
|
||||
"True positive": 1,
|
||||
"True positive (%)": 25.0,
|
||||
}
|
||||
},
|
||||
"Fix zero": {
|
||||
0: {
|
||||
"Accuracy": 0.75,
|
||||
"Condition negative": 3,
|
||||
"Condition negative (%)": 75.0,
|
||||
"Condition positive": 1,
|
||||
"Condition positive (%)": 25.0,
|
||||
"F1 score": 0.6666666666666666,
|
||||
"False negative": 0,
|
||||
"False negative (%)": 0.0,
|
||||
"False positive": 1,
|
||||
"False positive (%)": 25.0,
|
||||
"Precision": 0.5,
|
||||
"Predicted negative": 2,
|
||||
"Predicted negative (%)": 50.0,
|
||||
"Predicted positive": 2,
|
||||
"Predicted positive (%)": 50.0,
|
||||
"Recall": 1.0,
|
||||
"True negative": 2,
|
||||
"True negative (%)": 50.0,
|
||||
"True positive": 1,
|
||||
"True positive (%)": 25.0,
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def test_primal_parallel_fit():
|
||||
instances, models = get_test_pyomo_instances()
|
||||
comp = PrimalSolutionComponent()
|
||||
comp.fit(instances, n_jobs=2)
|
||||
assert len(comp.classifiers) == 2
|
||||
Reference in New Issue
Block a user