mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Move tests to separate folder
This commit is contained in:
70
tests/solvers/__init__.py
Normal file
70
tests/solvers/__init__.py
Normal file
@@ -0,0 +1,70 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from inspect import isclass
|
||||
from typing import List, Callable, Any
|
||||
|
||||
from pyomo import environ as pe
|
||||
|
||||
from miplearn.instance import Instance
|
||||
from miplearn.problems.knapsack import KnapsackInstance, GurobiKnapsackInstance
|
||||
from miplearn.solvers.gurobi import GurobiSolver
|
||||
from miplearn.solvers.internal import InternalSolver
|
||||
from miplearn.solvers.pyomo.base import BasePyomoSolver
|
||||
from miplearn.solvers.pyomo.gurobi import GurobiPyomoSolver
|
||||
from miplearn.solvers.pyomo.xpress import XpressPyomoSolver
|
||||
|
||||
|
||||
class InfeasiblePyomoInstance(Instance):
|
||||
def to_model(self) -> pe.ConcreteModel:
|
||||
model = pe.ConcreteModel()
|
||||
model.x = pe.Var([0], domain=pe.Binary)
|
||||
model.OBJ = pe.Objective(expr=model.x[0], sense=pe.maximize)
|
||||
model.eq = pe.Constraint(expr=model.x[0] >= 2)
|
||||
return model
|
||||
|
||||
|
||||
class InfeasibleGurobiInstance(Instance):
|
||||
def to_model(self) -> Any:
|
||||
import gurobipy as gp
|
||||
from gurobipy import GRB
|
||||
|
||||
model = gp.Model()
|
||||
x = model.addVars(1, vtype=GRB.BINARY, name="x")
|
||||
model.addConstr(x[0] >= 2)
|
||||
model.setObjective(x[0])
|
||||
return model
|
||||
|
||||
|
||||
def _is_subclass_or_instance(obj, parent_class):
|
||||
return isinstance(obj, parent_class) or (
|
||||
isclass(obj) and issubclass(obj, parent_class)
|
||||
)
|
||||
|
||||
|
||||
def _get_knapsack_instance(solver):
|
||||
if _is_subclass_or_instance(solver, BasePyomoSolver):
|
||||
return KnapsackInstance(
|
||||
weights=[23.0, 26.0, 20.0, 18.0],
|
||||
prices=[505.0, 352.0, 458.0, 220.0],
|
||||
capacity=67.0,
|
||||
)
|
||||
if _is_subclass_or_instance(solver, GurobiSolver):
|
||||
return GurobiKnapsackInstance(
|
||||
weights=[23.0, 26.0, 20.0, 18.0],
|
||||
prices=[505.0, 352.0, 458.0, 220.0],
|
||||
capacity=67.0,
|
||||
)
|
||||
assert False
|
||||
|
||||
|
||||
def _get_infeasible_instance(solver):
|
||||
if _is_subclass_or_instance(solver, BasePyomoSolver):
|
||||
return InfeasiblePyomoInstance()
|
||||
if _is_subclass_or_instance(solver, GurobiSolver):
|
||||
return InfeasibleGurobiInstance()
|
||||
|
||||
|
||||
def _get_internal_solvers() -> List[Callable[[], InternalSolver]]:
|
||||
return [GurobiPyomoSolver, GurobiSolver, XpressPyomoSolver]
|
||||
219
tests/solvers/test_internal_solver.py
Normal file
219
tests/solvers/test_internal_solver.py
Normal file
@@ -0,0 +1,219 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from io import StringIO
|
||||
from warnings import warn
|
||||
|
||||
import pyomo.environ as pe
|
||||
|
||||
from miplearn.solvers import _RedirectOutput
|
||||
from miplearn.solvers.gurobi import GurobiSolver
|
||||
from miplearn.solvers.pyomo.base import BasePyomoSolver
|
||||
from . import (
|
||||
_get_knapsack_instance,
|
||||
_get_internal_solvers,
|
||||
_get_infeasible_instance,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def test_redirect_output():
|
||||
import sys
|
||||
|
||||
original_stdout = sys.stdout
|
||||
io = StringIO()
|
||||
with _RedirectOutput([io]):
|
||||
print("Hello world")
|
||||
assert sys.stdout == original_stdout
|
||||
assert io.getvalue() == "Hello world\n"
|
||||
|
||||
|
||||
def test_internal_solver_warm_starts():
|
||||
for solver_class in _get_internal_solvers():
|
||||
logger.info("Solver: %s" % solver_class)
|
||||
instance = _get_knapsack_instance(solver_class)
|
||||
model = instance.to_model()
|
||||
solver = solver_class()
|
||||
solver.set_instance(instance, model)
|
||||
solver.set_warm_start(
|
||||
{
|
||||
"x": {
|
||||
0: 1.0,
|
||||
1: 0.0,
|
||||
2: 0.0,
|
||||
3: 1.0,
|
||||
}
|
||||
}
|
||||
)
|
||||
stats = solver.solve(tee=True)
|
||||
if stats["Warm start value"] is not None:
|
||||
assert stats["Warm start value"] == 725.0
|
||||
else:
|
||||
warn(f"{solver_class.__name__} should set warm start value")
|
||||
|
||||
solver.set_warm_start(
|
||||
{
|
||||
"x": {
|
||||
0: 1.0,
|
||||
1: 1.0,
|
||||
2: 1.0,
|
||||
3: 1.0,
|
||||
}
|
||||
}
|
||||
)
|
||||
stats = solver.solve(tee=True)
|
||||
assert stats["Warm start value"] is None
|
||||
|
||||
solver.fix(
|
||||
{
|
||||
"x": {
|
||||
0: 1.0,
|
||||
1: 0.0,
|
||||
2: 0.0,
|
||||
3: 1.0,
|
||||
}
|
||||
}
|
||||
)
|
||||
stats = solver.solve(tee=True)
|
||||
assert stats["Lower bound"] == 725.0
|
||||
assert stats["Upper bound"] == 725.0
|
||||
|
||||
|
||||
def test_internal_solver():
|
||||
for solver_class in _get_internal_solvers():
|
||||
logger.info("Solver: %s" % solver_class)
|
||||
|
||||
instance = _get_knapsack_instance(solver_class)
|
||||
model = instance.to_model()
|
||||
solver = solver_class()
|
||||
solver.set_instance(instance, model)
|
||||
|
||||
stats = solver.solve_lp()
|
||||
assert not solver.is_infeasible()
|
||||
assert round(stats["Optimal value"], 3) == 1287.923
|
||||
assert len(stats["Log"]) > 100
|
||||
|
||||
solution = solver.get_solution()
|
||||
assert round(solution["x"][0], 3) == 1.000
|
||||
assert round(solution["x"][1], 3) == 0.923
|
||||
assert round(solution["x"][2], 3) == 1.000
|
||||
assert round(solution["x"][3], 3) == 0.000
|
||||
|
||||
stats = solver.solve(tee=True)
|
||||
assert not solver.is_infeasible()
|
||||
assert len(stats["Log"]) > 100
|
||||
assert stats["Lower bound"] == 1183.0
|
||||
assert stats["Upper bound"] == 1183.0
|
||||
assert stats["Sense"] == "max"
|
||||
assert isinstance(stats["Wallclock time"], float)
|
||||
|
||||
solution = solver.get_solution()
|
||||
assert solution["x"][0] == 1.0
|
||||
assert solution["x"][1] == 0.0
|
||||
assert solution["x"][2] == 1.0
|
||||
assert solution["x"][3] == 1.0
|
||||
|
||||
# Add a brand new constraint
|
||||
if isinstance(solver, BasePyomoSolver):
|
||||
model.cut = pe.Constraint(expr=model.x[0] <= 0.0, name="cut")
|
||||
solver.add_constraint(model.cut)
|
||||
elif isinstance(solver, GurobiSolver):
|
||||
x = model.getVarByName("x[0]")
|
||||
solver.add_constraint(x <= 0.0, name="cut")
|
||||
else:
|
||||
raise Exception("Illegal state")
|
||||
|
||||
# New constraint should affect solution and should be listed in
|
||||
# constraint ids
|
||||
assert solver.get_constraint_ids() == ["eq_capacity", "cut"]
|
||||
stats = solver.solve()
|
||||
assert stats["Lower bound"] == 1030.0
|
||||
|
||||
assert solver.get_sense() == "max"
|
||||
assert solver.get_constraint_sense("cut") == "<"
|
||||
assert solver.get_constraint_sense("eq_capacity") == "<"
|
||||
|
||||
# Verify slacks
|
||||
assert solver.get_inequality_slacks() == {
|
||||
"cut": 0.0,
|
||||
"eq_capacity": 3.0,
|
||||
}
|
||||
|
||||
if isinstance(solver, GurobiSolver):
|
||||
# Extract the new constraint
|
||||
cobj = solver.extract_constraint("cut")
|
||||
|
||||
# New constraint should no longer affect solution and should no longer
|
||||
# be listed in constraint ids
|
||||
assert solver.get_constraint_ids() == ["eq_capacity"]
|
||||
stats = solver.solve()
|
||||
assert stats["Lower bound"] == 1183.0
|
||||
|
||||
# New constraint should not be satisfied by current solution
|
||||
assert not solver.is_constraint_satisfied(cobj)
|
||||
|
||||
# Re-add constraint
|
||||
solver.add_constraint(cobj)
|
||||
|
||||
# Constraint should affect solution again
|
||||
assert solver.get_constraint_ids() == ["eq_capacity", "cut"]
|
||||
stats = solver.solve()
|
||||
assert stats["Lower bound"] == 1030.0
|
||||
|
||||
# New constraint should now be satisfied
|
||||
assert solver.is_constraint_satisfied(cobj)
|
||||
|
||||
# Relax problem and make cut into an equality constraint
|
||||
solver.relax()
|
||||
solver.set_constraint_sense("cut", "=")
|
||||
stats = solver.solve()
|
||||
assert round(stats["Lower bound"]) == 1030.0
|
||||
assert round(solver.get_dual("eq_capacity")) == 0.0
|
||||
|
||||
|
||||
def test_relax():
|
||||
for solver_class in _get_internal_solvers():
|
||||
instance = _get_knapsack_instance(solver_class)
|
||||
solver = solver_class()
|
||||
solver.set_instance(instance)
|
||||
solver.relax()
|
||||
stats = solver.solve()
|
||||
assert round(stats["Lower bound"]) == 1288.0
|
||||
|
||||
|
||||
def test_infeasible_instance():
|
||||
for solver_class in _get_internal_solvers():
|
||||
instance = _get_infeasible_instance(solver_class)
|
||||
solver = solver_class()
|
||||
solver.set_instance(instance)
|
||||
stats = solver.solve()
|
||||
|
||||
assert solver.is_infeasible()
|
||||
assert solver.get_solution() is None
|
||||
assert stats["Upper bound"] is None
|
||||
assert stats["Lower bound"] is None
|
||||
|
||||
stats = solver.solve_lp()
|
||||
assert solver.get_solution() is None
|
||||
assert stats["Optimal value"] is None
|
||||
assert solver.get_value("x", 0) is None
|
||||
|
||||
|
||||
def test_iteration_cb():
|
||||
for solver_class in _get_internal_solvers():
|
||||
logger.info("Solver: %s" % solver_class)
|
||||
instance = _get_knapsack_instance(solver_class)
|
||||
solver = solver_class()
|
||||
solver.set_instance(instance)
|
||||
count = 0
|
||||
|
||||
def custom_iteration_cb():
|
||||
nonlocal count
|
||||
count += 1
|
||||
return count < 5
|
||||
|
||||
solver.solve(iteration_cb=custom_iteration_cb)
|
||||
assert count == 5
|
||||
27
tests/solvers/test_lazy_cb.py
Normal file
27
tests/solvers/test_lazy_cb.py
Normal file
@@ -0,0 +1,27 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
|
||||
from miplearn.solvers.gurobi import GurobiSolver
|
||||
from . import _get_knapsack_instance
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def test_lazy_cb():
|
||||
solver = GurobiSolver()
|
||||
instance = _get_knapsack_instance(solver)
|
||||
model = instance.to_model()
|
||||
|
||||
def lazy_cb(cb_solver, cb_model):
|
||||
logger.info("x[0] = %.f" % cb_solver.get_value("x", 0))
|
||||
cobj = (cb_model.getVarByName("x[0]") * 1.0, "<", 0.0, "cut")
|
||||
if not cb_solver.is_constraint_satisfied(cobj):
|
||||
cb_solver.add_constraint(cobj)
|
||||
|
||||
solver.set_instance(instance, model)
|
||||
solver.solve(lazy_cb=lazy_cb)
|
||||
solution = solver.get_solution()
|
||||
assert solution["x"][0] == 0.0
|
||||
142
tests/solvers/test_learning_solver.py
Normal file
142
tests/solvers/test_learning_solver.py
Normal file
@@ -0,0 +1,142 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
import pickle
|
||||
import tempfile
|
||||
import os
|
||||
|
||||
from miplearn.solvers.gurobi import GurobiSolver
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
from . import _get_knapsack_instance, _get_internal_solvers
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def test_learning_solver():
|
||||
for mode in ["exact", "heuristic"]:
|
||||
for internal_solver in _get_internal_solvers():
|
||||
logger.info("Solver: %s" % internal_solver)
|
||||
instance = _get_knapsack_instance(internal_solver)
|
||||
solver = LearningSolver(
|
||||
solver=internal_solver,
|
||||
mode=mode,
|
||||
)
|
||||
|
||||
solver.solve(instance)
|
||||
data = instance.training_data[0]
|
||||
assert data["Solution"]["x"][0] == 1.0
|
||||
assert data["Solution"]["x"][1] == 0.0
|
||||
assert data["Solution"]["x"][2] == 1.0
|
||||
assert data["Solution"]["x"][3] == 1.0
|
||||
assert data["Lower bound"] == 1183.0
|
||||
assert data["Upper bound"] == 1183.0
|
||||
assert round(data["LP solution"]["x"][0], 3) == 1.000
|
||||
assert round(data["LP solution"]["x"][1], 3) == 0.923
|
||||
assert round(data["LP solution"]["x"][2], 3) == 1.000
|
||||
assert round(data["LP solution"]["x"][3], 3) == 0.000
|
||||
assert round(data["LP value"], 3) == 1287.923
|
||||
assert len(data["MIP log"]) > 100
|
||||
|
||||
solver.fit([instance])
|
||||
solver.solve(instance)
|
||||
|
||||
# Assert solver is picklable
|
||||
with tempfile.TemporaryFile() as file:
|
||||
pickle.dump(solver, file)
|
||||
|
||||
|
||||
def test_solve_without_lp():
|
||||
for internal_solver in _get_internal_solvers():
|
||||
logger.info("Solver: %s" % internal_solver)
|
||||
instance = _get_knapsack_instance(internal_solver)
|
||||
solver = LearningSolver(
|
||||
solver=internal_solver,
|
||||
solve_lp_first=False,
|
||||
)
|
||||
solver.solve(instance)
|
||||
solver.fit([instance])
|
||||
solver.solve(instance)
|
||||
|
||||
|
||||
def test_parallel_solve():
|
||||
for internal_solver in _get_internal_solvers():
|
||||
instances = [_get_knapsack_instance(internal_solver) for _ in range(10)]
|
||||
solver = LearningSolver(solver=internal_solver)
|
||||
results = solver.parallel_solve(instances, n_jobs=3)
|
||||
assert len(results) == 10
|
||||
for instance in instances:
|
||||
data = instance.training_data[0]
|
||||
assert len(data["Solution"]["x"].keys()) == 4
|
||||
|
||||
|
||||
def test_solve_fit_from_disk():
|
||||
for internal_solver in _get_internal_solvers():
|
||||
# Create instances and pickle them
|
||||
filenames = []
|
||||
for k in range(3):
|
||||
instance = _get_knapsack_instance(internal_solver)
|
||||
with tempfile.NamedTemporaryFile(suffix=".pkl", delete=False) as file:
|
||||
filenames += [file.name]
|
||||
pickle.dump(instance, file)
|
||||
|
||||
# Test: solve
|
||||
solver = LearningSolver(solver=internal_solver)
|
||||
solver.solve(filenames[0])
|
||||
with open(filenames[0], "rb") as file:
|
||||
instance = pickle.load(file)
|
||||
assert len(instance.training_data) > 0
|
||||
|
||||
# Test: parallel_solve
|
||||
solver.parallel_solve(filenames)
|
||||
for filename in filenames:
|
||||
with open(filename, "rb") as file:
|
||||
instance = pickle.load(file)
|
||||
assert len(instance.training_data) > 0
|
||||
|
||||
# Test: solve (with specified output)
|
||||
output = [f + ".out" for f in filenames]
|
||||
solver.solve(
|
||||
filenames[0],
|
||||
output_filename=output[0],
|
||||
)
|
||||
assert os.path.isfile(output[0])
|
||||
|
||||
# Test: parallel_solve (with specified output)
|
||||
solver.parallel_solve(
|
||||
filenames,
|
||||
output_filenames=output,
|
||||
)
|
||||
for filename in output:
|
||||
assert os.path.isfile(filename)
|
||||
|
||||
# Delete temporary files
|
||||
for filename in filenames:
|
||||
os.remove(filename)
|
||||
for filename in output:
|
||||
os.remove(filename)
|
||||
|
||||
|
||||
def test_simulate_perfect():
|
||||
internal_solver = GurobiSolver
|
||||
instance = _get_knapsack_instance(internal_solver)
|
||||
with tempfile.NamedTemporaryFile(suffix=".pkl", delete=False) as tmp:
|
||||
pickle.dump(instance, tmp)
|
||||
tmp.flush()
|
||||
solver = LearningSolver(
|
||||
solver=internal_solver,
|
||||
simulate_perfect=True,
|
||||
)
|
||||
stats = solver.solve(tmp.name)
|
||||
assert stats["Lower bound"] == stats["Predicted LB"]
|
||||
|
||||
|
||||
def test_gap():
|
||||
assert LearningSolver._compute_gap(ub=0.0, lb=0.0) == 0.0
|
||||
assert LearningSolver._compute_gap(ub=1.0, lb=0.5) == 0.5
|
||||
assert LearningSolver._compute_gap(ub=1.0, lb=1.0) == 0.0
|
||||
assert LearningSolver._compute_gap(ub=1.0, lb=-1.0) is None
|
||||
assert LearningSolver._compute_gap(ub=1.0, lb=None) is None
|
||||
assert LearningSolver._compute_gap(ub=None, lb=1.0) is None
|
||||
assert LearningSolver._compute_gap(ub=None, lb=None) is None
|
||||
Reference in New Issue
Block a user