mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-07 09:58:51 -06:00
Move tests to separate folder
This commit is contained in:
69
tests/test_extractors.py
Normal file
69
tests/test_extractors.py
Normal file
@@ -0,0 +1,69 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
import numpy as np
|
||||
|
||||
from miplearn.extractors import (
|
||||
SolutionExtractor,
|
||||
InstanceFeaturesExtractor,
|
||||
VariableFeaturesExtractor,
|
||||
)
|
||||
from miplearn.problems.knapsack import KnapsackInstance
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
|
||||
|
||||
def _get_instances():
|
||||
instances = [
|
||||
KnapsackInstance(
|
||||
weights=[1.0, 2.0, 3.0],
|
||||
prices=[10.0, 20.0, 30.0],
|
||||
capacity=2.5,
|
||||
),
|
||||
KnapsackInstance(
|
||||
weights=[3.0, 4.0, 5.0],
|
||||
prices=[20.0, 30.0, 40.0],
|
||||
capacity=4.5,
|
||||
),
|
||||
]
|
||||
models = [instance.to_model() for instance in instances]
|
||||
solver = LearningSolver()
|
||||
for (i, instance) in enumerate(instances):
|
||||
solver.solve(instances[i], models[i])
|
||||
return instances, models
|
||||
|
||||
|
||||
def test_solution_extractor():
|
||||
instances, models = _get_instances()
|
||||
features = SolutionExtractor().extract(instances)
|
||||
assert isinstance(features, dict)
|
||||
assert "default" in features.keys()
|
||||
assert isinstance(features["default"], np.ndarray)
|
||||
assert features["default"].shape == (6, 2)
|
||||
assert features["default"].ravel().tolist() == [
|
||||
1.0,
|
||||
0.0,
|
||||
0.0,
|
||||
1.0,
|
||||
1.0,
|
||||
0.0,
|
||||
1.0,
|
||||
0.0,
|
||||
0.0,
|
||||
1.0,
|
||||
1.0,
|
||||
0.0,
|
||||
]
|
||||
|
||||
|
||||
def test_instance_features_extractor():
|
||||
instances, models = _get_instances()
|
||||
features = InstanceFeaturesExtractor().extract(instances)
|
||||
assert features.shape == (2, 3)
|
||||
|
||||
|
||||
def test_variable_features_extractor():
|
||||
instances, models = _get_instances()
|
||||
features = VariableFeaturesExtractor().extract(instances)
|
||||
assert isinstance(features, dict)
|
||||
assert "default" in features
|
||||
assert features["default"].shape == (6, 5)
|
||||
Reference in New Issue
Block a user