mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Reorganize instance package
This commit is contained in:
3
miplearn/instance/__init__.py
Normal file
3
miplearn/instance/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
165
miplearn/instance/base.py
Normal file
165
miplearn/instance/base.py
Normal file
@@ -0,0 +1,165 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, List, Optional, Hashable
|
||||
|
||||
from miplearn.features import TrainingSample, Features
|
||||
from miplearn.types import VarIndex
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# noinspection PyMethodMayBeStatic
|
||||
class Instance(ABC):
|
||||
"""
|
||||
Abstract class holding all the data necessary to generate a concrete model of the
|
||||
proble.
|
||||
|
||||
In the knapsack problem, for example, this class could hold the number of items,
|
||||
their weights and costs, as well as the size of the knapsack. Objects
|
||||
implementing this class are able to convert themselves into a concrete
|
||||
optimization model, which can be optimized by a solver, or into arrays of
|
||||
features, which can be provided as inputs to machine learning models.
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.training_data: List[TrainingSample] = []
|
||||
self.features: Features = Features()
|
||||
|
||||
@abstractmethod
|
||||
def to_model(self) -> Any:
|
||||
"""
|
||||
Returns the optimization model corresponding to this instance.
|
||||
"""
|
||||
pass
|
||||
|
||||
def get_instance_features(self) -> List[float]:
|
||||
"""
|
||||
Returns a 1-dimensional array of (numerical) features describing the
|
||||
entire instance.
|
||||
|
||||
The array is used by LearningSolver to determine how similar two instances
|
||||
are. It may also be used to predict, in combination with variable-specific
|
||||
features, the values of binary decision variables in the problem.
|
||||
|
||||
There is not necessarily a one-to-one correspondence between models and
|
||||
instance features: the features may encode only part of the data necessary to
|
||||
generate the complete model. Features may also be statistics computed from
|
||||
the original data. For example, in the knapsack problem, an implementation
|
||||
may decide to provide as instance features only the average weights, average
|
||||
prices, number of items and the size of the knapsack.
|
||||
|
||||
The returned array MUST have the same length for all relevant instances of
|
||||
the problem. If two instances map into arrays of different lengths,
|
||||
they cannot be solved by the same LearningSolver object.
|
||||
|
||||
By default, returns [0].
|
||||
"""
|
||||
return [0]
|
||||
|
||||
def get_variable_features(self, var_name: str, index: VarIndex) -> List[float]:
|
||||
"""
|
||||
Returns a 1-dimensional array of (numerical) features describing a particular
|
||||
decision variable.
|
||||
|
||||
In combination with instance features, variable features are used by
|
||||
LearningSolver to predict, among other things, the optimal value of each
|
||||
decision variable before the optimization takes place. In the knapsack
|
||||
problem, for example, an implementation could provide as variable features
|
||||
the weight and the price of a specific item.
|
||||
|
||||
Like instance features, the arrays returned by this method MUST have the same
|
||||
length for all variables within the same category, for all relevant instances
|
||||
of the problem.
|
||||
|
||||
By default, returns [0].
|
||||
"""
|
||||
return [0]
|
||||
|
||||
def get_variable_category(
|
||||
self,
|
||||
var_name: str,
|
||||
index: VarIndex,
|
||||
) -> Optional[Hashable]:
|
||||
"""
|
||||
Returns the category for each decision variable.
|
||||
|
||||
If two variables have the same category, LearningSolver will use the same
|
||||
internal ML model to predict the values of both variables. If the returned
|
||||
category is None, ML models will ignore the variable.
|
||||
|
||||
By default, returns "default".
|
||||
"""
|
||||
return "default"
|
||||
|
||||
def get_constraint_features(self, cid: str) -> Optional[List[float]]:
|
||||
return [0.0]
|
||||
|
||||
def get_constraint_category(self, cid: str) -> Optional[Hashable]:
|
||||
return cid
|
||||
|
||||
def has_static_lazy_constraints(self) -> bool:
|
||||
return False
|
||||
|
||||
def has_dynamic_lazy_constraints(self):
|
||||
return False
|
||||
|
||||
def is_constraint_lazy(self, cid: str) -> bool:
|
||||
return False
|
||||
|
||||
def find_violated_lazy_constraints(self, model):
|
||||
"""
|
||||
Returns lazy constraint violations found for the current solution.
|
||||
|
||||
After solving a model, LearningSolver will ask the instance to identify which
|
||||
lazy constraints are violated by the current solution. For each identified
|
||||
violation, LearningSolver will then call the build_lazy_constraint, add the
|
||||
generated Pyomo constraint to the model, then resolve the problem. The
|
||||
process repeats until no further lazy constraint violations are found.
|
||||
|
||||
Each "violation" is simply a string, a tuple or any other hashable type which
|
||||
allows the instance to identify unambiguously which lazy constraint should be
|
||||
generated. In the Traveling Salesman Problem, for example, a subtour
|
||||
violation could be a frozen set containing the cities in the subtour.
|
||||
|
||||
For a concrete example, see TravelingSalesmanInstance.
|
||||
"""
|
||||
return []
|
||||
|
||||
def build_lazy_constraint(self, model, violation):
|
||||
"""
|
||||
Returns a Pyomo constraint which fixes a given violation.
|
||||
|
||||
This method is typically called immediately after
|
||||
find_violated_lazy_constraints. The violation object provided to this method
|
||||
is exactly the same object returned earlier by
|
||||
find_violated_lazy_constraints. After some training, LearningSolver may
|
||||
decide to proactively build some lazy constraints at the beginning of the
|
||||
optimization process, before a solution is even available. In this case,
|
||||
build_lazy_constraints will be called without a corresponding call to
|
||||
find_violated_lazy_constraints.
|
||||
|
||||
The implementation should not directly add the constraint to the model. The
|
||||
constraint will be added by LearningSolver after the method returns.
|
||||
|
||||
For a concrete example, see TravelingSalesmanInstance.
|
||||
"""
|
||||
pass
|
||||
|
||||
def has_user_cuts(self) -> bool:
|
||||
return False
|
||||
|
||||
def find_violated_user_cuts(self, model: Any) -> List[Hashable]:
|
||||
return []
|
||||
|
||||
def build_user_cut(self, model: Any, violation: Hashable) -> Any:
|
||||
return None
|
||||
|
||||
def flush(self) -> None:
|
||||
"""
|
||||
Save any pending changes made to the instance to the underlying data store.
|
||||
"""
|
||||
pass
|
||||
137
miplearn/instance/picklegz.py
Normal file
137
miplearn/instance/picklegz.py
Normal file
@@ -0,0 +1,137 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import gzip
|
||||
import os
|
||||
import pickle
|
||||
from typing import Optional, Any, List, Hashable, cast, IO
|
||||
|
||||
from miplearn.instance.base import logger, Instance
|
||||
from miplearn.types import VarIndex
|
||||
|
||||
|
||||
def lazy_load(func):
|
||||
def inner(self, *args):
|
||||
if self.instance is None:
|
||||
self.instance = self._load()
|
||||
self.features = self.instance.features
|
||||
self.training_data = self.instance.training_data
|
||||
return func(self, *args)
|
||||
|
||||
return inner
|
||||
|
||||
|
||||
class PickleGzInstance(Instance):
|
||||
"""
|
||||
An instance backed by a gzipped pickle file.
|
||||
|
||||
The instance is only loaded to memory after an operation is called (for example,
|
||||
`to_model`).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
filename: str
|
||||
Path of the gzipped pickle file that should be loaded.
|
||||
"""
|
||||
|
||||
# noinspection PyMissingConstructor
|
||||
def __init__(self, filename: str) -> None:
|
||||
assert os.path.exists(filename), f"File not found: {filename}"
|
||||
self.instance: Optional[Instance] = None
|
||||
self.filename: str = filename
|
||||
|
||||
@lazy_load
|
||||
def to_model(self) -> Any:
|
||||
assert self.instance is not None
|
||||
return self.instance.to_model()
|
||||
|
||||
@lazy_load
|
||||
def get_instance_features(self) -> List[float]:
|
||||
assert self.instance is not None
|
||||
return self.instance.get_instance_features()
|
||||
|
||||
@lazy_load
|
||||
def get_variable_features(self, var_name: str, index: VarIndex) -> List[float]:
|
||||
assert self.instance is not None
|
||||
return self.instance.get_variable_features(var_name, index)
|
||||
|
||||
@lazy_load
|
||||
def get_variable_category(
|
||||
self,
|
||||
var_name: str,
|
||||
index: VarIndex,
|
||||
) -> Optional[Hashable]:
|
||||
assert self.instance is not None
|
||||
return self.instance.get_variable_category(var_name, index)
|
||||
|
||||
@lazy_load
|
||||
def get_constraint_features(self, cid: str) -> Optional[List[float]]:
|
||||
assert self.instance is not None
|
||||
return self.instance.get_constraint_features(cid)
|
||||
|
||||
@lazy_load
|
||||
def get_constraint_category(self, cid: str) -> Optional[Hashable]:
|
||||
assert self.instance is not None
|
||||
return self.instance.get_constraint_category(cid)
|
||||
|
||||
@lazy_load
|
||||
def has_static_lazy_constraints(self) -> bool:
|
||||
assert self.instance is not None
|
||||
return self.instance.has_static_lazy_constraints()
|
||||
|
||||
@lazy_load
|
||||
def has_dynamic_lazy_constraints(self):
|
||||
assert self.instance is not None
|
||||
return self.instance.has_dynamic_lazy_constraints()
|
||||
|
||||
@lazy_load
|
||||
def is_constraint_lazy(self, cid: str) -> bool:
|
||||
assert self.instance is not None
|
||||
return self.instance.is_constraint_lazy(cid)
|
||||
|
||||
@lazy_load
|
||||
def find_violated_lazy_constraints(self, model):
|
||||
assert self.instance is not None
|
||||
return self.instance.find_violated_lazy_constraints(model)
|
||||
|
||||
@lazy_load
|
||||
def build_lazy_constraint(self, model, violation):
|
||||
assert self.instance is not None
|
||||
return self.instance.build_lazy_constraint(model, violation)
|
||||
|
||||
@lazy_load
|
||||
def find_violated_user_cuts(self, model):
|
||||
assert self.instance is not None
|
||||
return self.instance.find_violated_user_cuts(model)
|
||||
|
||||
@lazy_load
|
||||
def build_user_cut(self, model, violation):
|
||||
assert self.instance is not None
|
||||
return self.instance.build_user_cut(model, violation)
|
||||
|
||||
def _load(self) -> Instance:
|
||||
obj = read_pickle_gz(self.filename)
|
||||
assert isinstance(obj, Instance)
|
||||
return obj
|
||||
|
||||
def flush(self) -> None:
|
||||
write_pickle_gz(self.instance, self.filename)
|
||||
|
||||
|
||||
def write_pickle_gz(obj: Any, filename: str) -> None:
|
||||
logger.info(f"Writing: {filename}")
|
||||
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
||||
with gzip.GzipFile(filename, "wb") as file:
|
||||
pickle.dump(obj, cast(IO[bytes], file))
|
||||
|
||||
|
||||
def read_pickle_gz(filename: str) -> Any:
|
||||
logger.info(f"Reading: {filename}")
|
||||
with gzip.GzipFile(filename, "rb") as file:
|
||||
return pickle.load(cast(IO[bytes], file))
|
||||
|
||||
|
||||
def write_pickle_gz_multiple(objs: List[Any], dirname: str) -> None:
|
||||
for (i, obj) in enumerate(objs):
|
||||
write_pickle_gz(obj, f"{dirname}/{i:05d}.pkl.gz")
|
||||
Reference in New Issue
Block a user