Remove unused extractors

master
Alinson S. Xavier 5 years ago
parent 603902e608
commit fe47b0825f

@ -19,12 +19,7 @@ from .components.primal import PrimalSolutionComponent
from .components.steps.convert_tight import ConvertTightIneqsIntoEqsStep from .components.steps.convert_tight import ConvertTightIneqsIntoEqsStep
from .components.steps.drop_redundant import DropRedundantInequalitiesStep from .components.steps.drop_redundant import DropRedundantInequalitiesStep
from .components.steps.relax_integrality import RelaxIntegralityStep from .components.steps.relax_integrality import RelaxIntegralityStep
from .extractors import ( from .extractors import InstanceFeaturesExtractor
SolutionExtractor,
InstanceFeaturesExtractor,
ObjectiveValueExtractor,
VariableFeaturesExtractor,
)
from .instance import Instance from .instance import Instance
from .log import setup_logger from .log import setup_logger
from .solvers.gurobi import GurobiSolver from .solvers.gurobi import GurobiSolver

@ -67,61 +67,6 @@ class Extractor(ABC):
return result return result
class VariableFeaturesExtractor(Extractor):
def extract(self, instances):
result = {}
for instance in tqdm(
InstanceIterator(instances),
desc="Extract (vars)",
disable=len(instances) < 5,
):
instance_features = instance.get_instance_features()
var_split = self.split_variables(instance)
lp_solution = instance.training_data[0]["LP solution"]
for (category, var_index_pairs) in var_split.items():
if category not in result:
result[category] = []
for (var_name, index) in var_index_pairs:
result[category] += [
instance_features.tolist()
+ instance.get_variable_features(var_name, index).tolist()
+ [lp_solution[var_name][index]]
]
for category in result:
result[category] = np.array(result[category])
return result
class SolutionExtractor(Extractor):
def __init__(self, relaxation=False):
self.relaxation = relaxation
def extract(self, instances):
result = {}
for instance in tqdm(
InstanceIterator(instances),
desc="Extract (solution)",
disable=len(instances) < 5,
):
var_split = self.split_variables(instance)
if self.relaxation:
solution = instance.training_data[0]["LP solution"]
else:
solution = instance.training_data[0]["Solution"]
for (category, var_index_pairs) in var_split.items():
if category not in result:
result[category] = []
for (var_name, index) in var_index_pairs:
v = solution[var_name][index]
if v is None:
result[category] += [[0, 0]]
else:
result[category] += [[1 - v, v]]
for category in result:
result[category] = np.array(result[category])
return result
class InstanceFeaturesExtractor(Extractor): class InstanceFeaturesExtractor(Extractor):
def extract(self, instances): def extract(self, instances):
return np.vstack( return np.vstack(
@ -135,32 +80,3 @@ class InstanceFeaturesExtractor(Extractor):
for instance in InstanceIterator(instances) for instance in InstanceIterator(instances)
] ]
) )
class ObjectiveValueExtractor(Extractor):
def __init__(self, kind="lp"):
assert kind in ["lower bound", "upper bound", "lp"]
self.kind = kind
def extract(self, instances):
if self.kind == "lower bound":
return np.array(
[
[instance.training_data[0]["Lower bound"]]
for instance in InstanceIterator(instances)
]
)
if self.kind == "upper bound":
return np.array(
[
[instance.training_data[0]["Upper bound"]]
for instance in InstanceIterator(instances)
]
)
if self.kind == "lp":
return np.array(
[
[instance.training_data[0]["LP value"]]
for instance in InstanceIterator(instances)
]
)

@ -3,11 +3,7 @@
# Released under the modified BSD license. See COPYING.md for more details. # Released under the modified BSD license. See COPYING.md for more details.
import numpy as np import numpy as np
from miplearn.extractors import ( from miplearn.extractors import InstanceFeaturesExtractor
SolutionExtractor,
InstanceFeaturesExtractor,
VariableFeaturesExtractor,
)
from miplearn.problems.knapsack import KnapsackInstance from miplearn.problems.knapsack import KnapsackInstance
from miplearn.solvers.learning import LearningSolver from miplearn.solvers.learning import LearningSolver
@ -32,38 +28,7 @@ def _get_instances():
return instances, models return instances, models
def test_solution_extractor():
instances, models = _get_instances()
features = SolutionExtractor().extract(instances)
assert isinstance(features, dict)
assert "default" in features.keys()
assert isinstance(features["default"], np.ndarray)
assert features["default"].shape == (6, 2)
assert features["default"].ravel().tolist() == [
1.0,
0.0,
0.0,
1.0,
1.0,
0.0,
1.0,
0.0,
0.0,
1.0,
1.0,
0.0,
]
def test_instance_features_extractor(): def test_instance_features_extractor():
instances, models = _get_instances() instances, models = _get_instances()
features = InstanceFeaturesExtractor().extract(instances) features = InstanceFeaturesExtractor().extract(instances)
assert features.shape == (2, 3) assert features.shape == (2, 3)
def test_variable_features_extractor():
instances, models = _get_instances()
features = VariableFeaturesExtractor().extract(instances)
assert isinstance(features, dict)
assert "default" in features
assert features["default"].shape == (6, 5)

Loading…
Cancel
Save