|
|
@ -67,61 +67,6 @@ class Extractor(ABC):
|
|
|
|
return result
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class VariableFeaturesExtractor(Extractor):
|
|
|
|
|
|
|
|
def extract(self, instances):
|
|
|
|
|
|
|
|
result = {}
|
|
|
|
|
|
|
|
for instance in tqdm(
|
|
|
|
|
|
|
|
InstanceIterator(instances),
|
|
|
|
|
|
|
|
desc="Extract (vars)",
|
|
|
|
|
|
|
|
disable=len(instances) < 5,
|
|
|
|
|
|
|
|
):
|
|
|
|
|
|
|
|
instance_features = instance.get_instance_features()
|
|
|
|
|
|
|
|
var_split = self.split_variables(instance)
|
|
|
|
|
|
|
|
lp_solution = instance.training_data[0]["LP solution"]
|
|
|
|
|
|
|
|
for (category, var_index_pairs) in var_split.items():
|
|
|
|
|
|
|
|
if category not in result:
|
|
|
|
|
|
|
|
result[category] = []
|
|
|
|
|
|
|
|
for (var_name, index) in var_index_pairs:
|
|
|
|
|
|
|
|
result[category] += [
|
|
|
|
|
|
|
|
instance_features.tolist()
|
|
|
|
|
|
|
|
+ instance.get_variable_features(var_name, index).tolist()
|
|
|
|
|
|
|
|
+ [lp_solution[var_name][index]]
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
for category in result:
|
|
|
|
|
|
|
|
result[category] = np.array(result[category])
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SolutionExtractor(Extractor):
|
|
|
|
|
|
|
|
def __init__(self, relaxation=False):
|
|
|
|
|
|
|
|
self.relaxation = relaxation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract(self, instances):
|
|
|
|
|
|
|
|
result = {}
|
|
|
|
|
|
|
|
for instance in tqdm(
|
|
|
|
|
|
|
|
InstanceIterator(instances),
|
|
|
|
|
|
|
|
desc="Extract (solution)",
|
|
|
|
|
|
|
|
disable=len(instances) < 5,
|
|
|
|
|
|
|
|
):
|
|
|
|
|
|
|
|
var_split = self.split_variables(instance)
|
|
|
|
|
|
|
|
if self.relaxation:
|
|
|
|
|
|
|
|
solution = instance.training_data[0]["LP solution"]
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
solution = instance.training_data[0]["Solution"]
|
|
|
|
|
|
|
|
for (category, var_index_pairs) in var_split.items():
|
|
|
|
|
|
|
|
if category not in result:
|
|
|
|
|
|
|
|
result[category] = []
|
|
|
|
|
|
|
|
for (var_name, index) in var_index_pairs:
|
|
|
|
|
|
|
|
v = solution[var_name][index]
|
|
|
|
|
|
|
|
if v is None:
|
|
|
|
|
|
|
|
result[category] += [[0, 0]]
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
result[category] += [[1 - v, v]]
|
|
|
|
|
|
|
|
for category in result:
|
|
|
|
|
|
|
|
result[category] = np.array(result[category])
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class InstanceFeaturesExtractor(Extractor):
|
|
|
|
class InstanceFeaturesExtractor(Extractor):
|
|
|
|
def extract(self, instances):
|
|
|
|
def extract(self, instances):
|
|
|
|
return np.vstack(
|
|
|
|
return np.vstack(
|
|
|
@ -135,32 +80,3 @@ class InstanceFeaturesExtractor(Extractor):
|
|
|
|
for instance in InstanceIterator(instances)
|
|
|
|
for instance in InstanceIterator(instances)
|
|
|
|
]
|
|
|
|
]
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ObjectiveValueExtractor(Extractor):
|
|
|
|
|
|
|
|
def __init__(self, kind="lp"):
|
|
|
|
|
|
|
|
assert kind in ["lower bound", "upper bound", "lp"]
|
|
|
|
|
|
|
|
self.kind = kind
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract(self, instances):
|
|
|
|
|
|
|
|
if self.kind == "lower bound":
|
|
|
|
|
|
|
|
return np.array(
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
[instance.training_data[0]["Lower bound"]]
|
|
|
|
|
|
|
|
for instance in InstanceIterator(instances)
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
if self.kind == "upper bound":
|
|
|
|
|
|
|
|
return np.array(
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
[instance.training_data[0]["Upper bound"]]
|
|
|
|
|
|
|
|
for instance in InstanceIterator(instances)
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
if self.kind == "lp":
|
|
|
|
|
|
|
|
return np.array(
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
[instance.training_data[0]["LP value"]]
|
|
|
|
|
|
|
|
for instance in InstanceIterator(instances)
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|