mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Remove unused extractors
This commit is contained in:
@@ -19,12 +19,7 @@ from .components.primal import PrimalSolutionComponent
|
|||||||
from .components.steps.convert_tight import ConvertTightIneqsIntoEqsStep
|
from .components.steps.convert_tight import ConvertTightIneqsIntoEqsStep
|
||||||
from .components.steps.drop_redundant import DropRedundantInequalitiesStep
|
from .components.steps.drop_redundant import DropRedundantInequalitiesStep
|
||||||
from .components.steps.relax_integrality import RelaxIntegralityStep
|
from .components.steps.relax_integrality import RelaxIntegralityStep
|
||||||
from .extractors import (
|
from .extractors import InstanceFeaturesExtractor
|
||||||
SolutionExtractor,
|
|
||||||
InstanceFeaturesExtractor,
|
|
||||||
ObjectiveValueExtractor,
|
|
||||||
VariableFeaturesExtractor,
|
|
||||||
)
|
|
||||||
from .instance import Instance
|
from .instance import Instance
|
||||||
from .log import setup_logger
|
from .log import setup_logger
|
||||||
from .solvers.gurobi import GurobiSolver
|
from .solvers.gurobi import GurobiSolver
|
||||||
|
|||||||
@@ -67,61 +67,6 @@ class Extractor(ABC):
|
|||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
class VariableFeaturesExtractor(Extractor):
|
|
||||||
def extract(self, instances):
|
|
||||||
result = {}
|
|
||||||
for instance in tqdm(
|
|
||||||
InstanceIterator(instances),
|
|
||||||
desc="Extract (vars)",
|
|
||||||
disable=len(instances) < 5,
|
|
||||||
):
|
|
||||||
instance_features = instance.get_instance_features()
|
|
||||||
var_split = self.split_variables(instance)
|
|
||||||
lp_solution = instance.training_data[0]["LP solution"]
|
|
||||||
for (category, var_index_pairs) in var_split.items():
|
|
||||||
if category not in result:
|
|
||||||
result[category] = []
|
|
||||||
for (var_name, index) in var_index_pairs:
|
|
||||||
result[category] += [
|
|
||||||
instance_features.tolist()
|
|
||||||
+ instance.get_variable_features(var_name, index).tolist()
|
|
||||||
+ [lp_solution[var_name][index]]
|
|
||||||
]
|
|
||||||
for category in result:
|
|
||||||
result[category] = np.array(result[category])
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
class SolutionExtractor(Extractor):
|
|
||||||
def __init__(self, relaxation=False):
|
|
||||||
self.relaxation = relaxation
|
|
||||||
|
|
||||||
def extract(self, instances):
|
|
||||||
result = {}
|
|
||||||
for instance in tqdm(
|
|
||||||
InstanceIterator(instances),
|
|
||||||
desc="Extract (solution)",
|
|
||||||
disable=len(instances) < 5,
|
|
||||||
):
|
|
||||||
var_split = self.split_variables(instance)
|
|
||||||
if self.relaxation:
|
|
||||||
solution = instance.training_data[0]["LP solution"]
|
|
||||||
else:
|
|
||||||
solution = instance.training_data[0]["Solution"]
|
|
||||||
for (category, var_index_pairs) in var_split.items():
|
|
||||||
if category not in result:
|
|
||||||
result[category] = []
|
|
||||||
for (var_name, index) in var_index_pairs:
|
|
||||||
v = solution[var_name][index]
|
|
||||||
if v is None:
|
|
||||||
result[category] += [[0, 0]]
|
|
||||||
else:
|
|
||||||
result[category] += [[1 - v, v]]
|
|
||||||
for category in result:
|
|
||||||
result[category] = np.array(result[category])
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
class InstanceFeaturesExtractor(Extractor):
|
class InstanceFeaturesExtractor(Extractor):
|
||||||
def extract(self, instances):
|
def extract(self, instances):
|
||||||
return np.vstack(
|
return np.vstack(
|
||||||
@@ -135,32 +80,3 @@ class InstanceFeaturesExtractor(Extractor):
|
|||||||
for instance in InstanceIterator(instances)
|
for instance in InstanceIterator(instances)
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
class ObjectiveValueExtractor(Extractor):
|
|
||||||
def __init__(self, kind="lp"):
|
|
||||||
assert kind in ["lower bound", "upper bound", "lp"]
|
|
||||||
self.kind = kind
|
|
||||||
|
|
||||||
def extract(self, instances):
|
|
||||||
if self.kind == "lower bound":
|
|
||||||
return np.array(
|
|
||||||
[
|
|
||||||
[instance.training_data[0]["Lower bound"]]
|
|
||||||
for instance in InstanceIterator(instances)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
if self.kind == "upper bound":
|
|
||||||
return np.array(
|
|
||||||
[
|
|
||||||
[instance.training_data[0]["Upper bound"]]
|
|
||||||
for instance in InstanceIterator(instances)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
if self.kind == "lp":
|
|
||||||
return np.array(
|
|
||||||
[
|
|
||||||
[instance.training_data[0]["LP value"]]
|
|
||||||
for instance in InstanceIterator(instances)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|||||||
@@ -3,11 +3,7 @@
|
|||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from miplearn.extractors import (
|
from miplearn.extractors import InstanceFeaturesExtractor
|
||||||
SolutionExtractor,
|
|
||||||
InstanceFeaturesExtractor,
|
|
||||||
VariableFeaturesExtractor,
|
|
||||||
)
|
|
||||||
from miplearn.problems.knapsack import KnapsackInstance
|
from miplearn.problems.knapsack import KnapsackInstance
|
||||||
from miplearn.solvers.learning import LearningSolver
|
from miplearn.solvers.learning import LearningSolver
|
||||||
|
|
||||||
@@ -32,38 +28,7 @@ def _get_instances():
|
|||||||
return instances, models
|
return instances, models
|
||||||
|
|
||||||
|
|
||||||
def test_solution_extractor():
|
|
||||||
instances, models = _get_instances()
|
|
||||||
features = SolutionExtractor().extract(instances)
|
|
||||||
assert isinstance(features, dict)
|
|
||||||
assert "default" in features.keys()
|
|
||||||
assert isinstance(features["default"], np.ndarray)
|
|
||||||
assert features["default"].shape == (6, 2)
|
|
||||||
assert features["default"].ravel().tolist() == [
|
|
||||||
1.0,
|
|
||||||
0.0,
|
|
||||||
0.0,
|
|
||||||
1.0,
|
|
||||||
1.0,
|
|
||||||
0.0,
|
|
||||||
1.0,
|
|
||||||
0.0,
|
|
||||||
0.0,
|
|
||||||
1.0,
|
|
||||||
1.0,
|
|
||||||
0.0,
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
def test_instance_features_extractor():
|
def test_instance_features_extractor():
|
||||||
instances, models = _get_instances()
|
instances, models = _get_instances()
|
||||||
features = InstanceFeaturesExtractor().extract(instances)
|
features = InstanceFeaturesExtractor().extract(instances)
|
||||||
assert features.shape == (2, 3)
|
assert features.shape == (2, 3)
|
||||||
|
|
||||||
|
|
||||||
def test_variable_features_extractor():
|
|
||||||
instances, models = _get_instances()
|
|
||||||
features = VariableFeaturesExtractor().extract(instances)
|
|
||||||
assert isinstance(features, dict)
|
|
||||||
assert "default" in features
|
|
||||||
assert features["default"].shape == (6, 5)
|
|
||||||
|
|||||||
Reference in New Issue
Block a user