mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-07 18:08:51 -06:00
Make xy_sample receive features, not instances
This commit is contained in:
@@ -11,35 +11,10 @@ from numpy.testing import assert_array_equal
|
||||
from miplearn.instance import Instance
|
||||
from miplearn.classifiers import Regressor
|
||||
from miplearn.components.objective import ObjectiveValueComponent
|
||||
from miplearn.types import TrainingSample
|
||||
from miplearn.types import TrainingSample, Features
|
||||
from tests.fixtures.knapsack import get_test_pyomo_instances
|
||||
|
||||
|
||||
def test_xy_sample() -> None:
|
||||
instance = cast(Instance, Mock(spec=Instance))
|
||||
instance.features = {
|
||||
"Instance": {
|
||||
"User features": [1.0, 2.0],
|
||||
}
|
||||
}
|
||||
sample: TrainingSample = {
|
||||
"Lower bound": 1.0,
|
||||
"Upper bound": 2.0,
|
||||
"LP value": 3.0,
|
||||
}
|
||||
x_expected = {
|
||||
"Lower bound": [[1.0, 2.0, 3.0]],
|
||||
"Upper bound": [[1.0, 2.0, 3.0]],
|
||||
}
|
||||
y_expected = {
|
||||
"Lower bound": [[1.0]],
|
||||
"Upper bound": [[2.0]],
|
||||
}
|
||||
x_actual, y_actual = ObjectiveValueComponent.xy_sample(instance, sample)
|
||||
assert x_actual == x_expected
|
||||
assert y_actual == y_expected
|
||||
|
||||
|
||||
def test_x_y_predict() -> None:
|
||||
# Construct instance
|
||||
instance = cast(Instance, Mock(spec=Instance))
|
||||
@@ -125,3 +100,54 @@ def test_obj_evaluate():
|
||||
"R2": -5.012843605607331,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def test_xy_sample_with_lp() -> None:
|
||||
features: Features = {
|
||||
"Instance": {
|
||||
"User features": [1.0, 2.0],
|
||||
}
|
||||
}
|
||||
sample: TrainingSample = {
|
||||
"Lower bound": 1.0,
|
||||
"Upper bound": 2.0,
|
||||
"LP value": 3.0,
|
||||
}
|
||||
x_expected = {
|
||||
"Lower bound": [[1.0, 2.0, 3.0]],
|
||||
"Upper bound": [[1.0, 2.0, 3.0]],
|
||||
}
|
||||
y_expected = {
|
||||
"Lower bound": [[1.0]],
|
||||
"Upper bound": [[2.0]],
|
||||
}
|
||||
xy = ObjectiveValueComponent.xy_sample(features, sample)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
assert y_actual == y_expected
|
||||
|
||||
|
||||
def test_xy_sample_without_lp() -> None:
|
||||
features: Features = {
|
||||
"Instance": {
|
||||
"User features": [1.0, 2.0],
|
||||
}
|
||||
}
|
||||
sample: TrainingSample = {
|
||||
"Lower bound": 1.0,
|
||||
"Upper bound": 2.0,
|
||||
}
|
||||
x_expected = {
|
||||
"Lower bound": [[1.0, 2.0]],
|
||||
"Upper bound": [[1.0, 2.0]],
|
||||
}
|
||||
y_expected = {
|
||||
"Lower bound": [[1.0]],
|
||||
"Upper bound": [[2.0]],
|
||||
}
|
||||
xy = ObjectiveValueComponent.xy_sample(features, sample)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
assert y_actual == y_expected
|
||||
|
||||
Reference in New Issue
Block a user