mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-07 09:58:51 -06:00
Make xy_sample receive features, not instances
This commit is contained in:
@@ -1,22 +1,22 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
from typing import cast, List
|
||||
from unittest.mock import Mock, call
|
||||
|
||||
from typing import cast
|
||||
from unittest.mock import Mock
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import assert_array_equal
|
||||
|
||||
from miplearn import Classifier
|
||||
from miplearn.classifiers.threshold import Threshold, MinPrecisionThreshold
|
||||
from miplearn.classifiers.threshold import Threshold
|
||||
from miplearn.components.primal import PrimalSolutionComponent
|
||||
from miplearn.instance import Instance
|
||||
from miplearn.types import TrainingSample
|
||||
from miplearn.types import TrainingSample, Features
|
||||
|
||||
|
||||
def test_xy_sample_with_lp_solution() -> None:
|
||||
instance = cast(Instance, Mock(spec=Instance))
|
||||
instance.features = {
|
||||
features: Features = {
|
||||
"Variables": {
|
||||
"x": {
|
||||
0: {
|
||||
@@ -56,34 +56,28 @@ def test_xy_sample_with_lp_solution() -> None:
|
||||
},
|
||||
}
|
||||
x_expected = {
|
||||
"default": np.array(
|
||||
[
|
||||
[0.0, 0.0, 0.1],
|
||||
[1.0, 0.0, 0.1],
|
||||
[1.0, 1.0, 0.1],
|
||||
]
|
||||
)
|
||||
"default": [
|
||||
[0.0, 0.0, 0.1],
|
||||
[1.0, 0.0, 0.1],
|
||||
[1.0, 1.0, 0.1],
|
||||
]
|
||||
}
|
||||
y_expected = {
|
||||
"default": np.array(
|
||||
[
|
||||
[True, False],
|
||||
[False, True],
|
||||
[True, False],
|
||||
]
|
||||
)
|
||||
"default": [
|
||||
[True, False],
|
||||
[False, True],
|
||||
[True, False],
|
||||
]
|
||||
}
|
||||
x_actual, y_actual = PrimalSolutionComponent.xy_sample(instance, sample)
|
||||
assert len(x_actual.keys()) == 1
|
||||
assert len(y_actual.keys()) == 1
|
||||
assert_array_equal(x_actual["default"], x_expected["default"])
|
||||
assert_array_equal(y_actual["default"], y_expected["default"])
|
||||
xy = PrimalSolutionComponent.xy_sample(features, sample)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
assert y_actual == y_expected
|
||||
|
||||
|
||||
def test_xy_sample_without_lp_solution() -> None:
|
||||
comp = PrimalSolutionComponent()
|
||||
instance = cast(Instance, Mock(spec=Instance))
|
||||
instance.features = {
|
||||
features: Features = {
|
||||
"Variables": {
|
||||
"x": {
|
||||
0: {
|
||||
@@ -115,28 +109,24 @@ def test_xy_sample_without_lp_solution() -> None:
|
||||
},
|
||||
}
|
||||
x_expected = {
|
||||
"default": np.array(
|
||||
[
|
||||
[0.0, 0.0],
|
||||
[1.0, 0.0],
|
||||
[1.0, 1.0],
|
||||
]
|
||||
)
|
||||
"default": [
|
||||
[0.0, 0.0],
|
||||
[1.0, 0.0],
|
||||
[1.0, 1.0],
|
||||
]
|
||||
}
|
||||
y_expected = {
|
||||
"default": np.array(
|
||||
[
|
||||
[True, False],
|
||||
[False, True],
|
||||
[True, False],
|
||||
]
|
||||
)
|
||||
"default": [
|
||||
[True, False],
|
||||
[False, True],
|
||||
[True, False],
|
||||
]
|
||||
}
|
||||
x_actual, y_actual = comp.xy_sample(instance, sample)
|
||||
assert len(x_actual.keys()) == 1
|
||||
assert len(y_actual.keys()) == 1
|
||||
assert_array_equal(x_actual["default"], x_expected["default"])
|
||||
assert_array_equal(y_actual["default"], y_expected["default"])
|
||||
xy = PrimalSolutionComponent.xy_sample(features, sample)
|
||||
assert xy is not None
|
||||
x_actual, y_actual = xy
|
||||
assert x_actual == x_expected
|
||||
assert y_actual == y_expected
|
||||
|
||||
|
||||
def test_predict() -> None:
|
||||
|
||||
Reference in New Issue
Block a user