Compare commits

...

3 Commits

Binary file not shown.

@ -81,7 +81,6 @@ class BasicCollector:
print(f"Error processing: data_filename")
traceback.print_exc()
if n_jobs > 1:
p_umap(
_collect,

@ -1,29 +1,53 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from typing import Tuple
from typing import Tuple, List
import numpy as np
from miplearn.h5 import H5File
def _extract_bin_var_names_values(
def _extract_var_names_values(
h5: H5File,
selected_var_types: List[bytes],
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
bin_var_names, bin_var_indices = _extract_bin_var_names(h5)
bin_var_names, bin_var_indices = _extract_var_names(h5, selected_var_types)
var_values = h5.get_array("mip_var_values")
assert var_values is not None
bin_var_values = var_values[bin_var_indices].astype(int)
return bin_var_names, bin_var_values, bin_var_indices
def _extract_bin_var_names(h5: H5File) -> Tuple[np.ndarray, np.ndarray]:
def _extract_var_names(
h5: H5File,
selected_var_types: List[bytes],
) -> Tuple[np.ndarray, np.ndarray]:
var_types = h5.get_array("static_var_types")
var_names = h5.get_array("static_var_names")
assert var_types is not None
assert var_names is not None
bin_var_indices = np.where(var_types == b"B")[0]
bin_var_indices = np.where(np.isin(var_types, selected_var_types))[0]
bin_var_names = var_names[bin_var_indices]
assert len(bin_var_names.shape) == 1
return bin_var_names, bin_var_indices
def _extract_bin_var_names_values(
h5: H5File,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
return _extract_var_names_values(h5, [b"B"])
def _extract_bin_var_names(h5: H5File) -> Tuple[np.ndarray, np.ndarray]:
return _extract_var_names(h5, [b"B"])
def _extract_int_var_names_values(
h5: H5File,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
return _extract_var_names_values(h5, [b"B", b"I"])
def _extract_int_var_names(h5: H5File) -> Tuple[np.ndarray, np.ndarray]:
return _extract_var_names(h5, [b"B", b"I"])

@ -5,7 +5,7 @@
import logging
from typing import Any, Dict, List
from . import _extract_bin_var_names_values
from . import _extract_int_var_names_values
from .actions import PrimalComponentAction
from ...solvers.abstract import AbstractModel
from ...h5 import H5File
@ -28,5 +28,5 @@ class ExpertPrimalComponent:
self, test_h5: str, model: AbstractModel, stats: Dict[str, Any]
) -> None:
with H5File(test_h5, "r") as h5:
names, values, _ = _extract_bin_var_names_values(h5)
names, values, _ = _extract_int_var_names_values(h5)
self.action.perform(model, names, values.reshape(1, -1), stats)

@ -68,7 +68,7 @@ class H5File:
return
self._assert_is_array(value)
if value.dtype.kind == "f":
value = value.astype("float32")
value = value.astype("float64")
if key in self.file:
del self.file[key]
return self.file.create_dataset(key, data=value, compression="gzip")

@ -3,7 +3,7 @@
# Released under the modified BSD license. See COPYING.md for more details.
from os.path import exists
from tempfile import NamedTemporaryFile
from typing import List, Any, Union, Dict, Callable, Optional
from typing import List, Any, Union, Dict, Callable, Optional, Tuple
from miplearn.h5 import H5File
from miplearn.io import _to_h5_filename
@ -25,7 +25,7 @@ class LearningSolver:
self,
model: Union[str, AbstractModel],
build_model: Optional[Callable] = None,
) -> Dict[str, Any]:
) -> Tuple[AbstractModel, Dict[str, Any]]:
h5_filename, mode = NamedTemporaryFile().name, "w"
if isinstance(model, str):
assert build_model is not None
@ -51,4 +51,4 @@ class LearningSolver:
model.optimize()
model.extract_after_mip(h5)
return stats
return model, stats

@ -71,5 +71,5 @@ def test_usage_stab(
comp = MemorizingCutsComponent(clf=clf, extractor=default_extractor)
solver = LearningSolver(components=[comp])
solver.fit(data_filenames)
stats = solver.optimize(data_filenames[0], build_model) # type: ignore
model, stats = solver.optimize(data_filenames[0], build_model) # type: ignore
assert stats["Cuts: AOT"] > 0

@ -65,5 +65,5 @@ def test_usage_tsp(
comp = MemorizingLazyComponent(clf=clf, extractor=default_extractor)
solver = LearningSolver(components=[comp])
solver.fit(data_filenames)
stats = solver.optimize(data_filenames[0], build_model) # type: ignore
model, stats = solver.optimize(data_filenames[0], build_model) # type: ignore
assert stats["Lazy Constraints: AOT"] > 0

Loading…
Cancel
Save