- H5File: Use float64 precision instead of float32
- LearningSolver: optimize now returns (model, stats) instead of just stats
- Update dependency: Gurobi 11
## [0.4.0] - 2024-02-06
@ -15,31 +24,41 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
### Changed
- LearningSolver.solve no longer generates HDF5 files; use a collector instead.
- Add `_gurobipy` suffix to all `build_model` functions; implement some `_pyomo` and `_jump` functions.
- Add `_gurobipy` suffix to all `build_model` functions; implement some `_pyomo`
and `_jump` functions.
## [0.3.0] - 2023-06-08
This is a complete rewrite of the original prototype package, with an entirely new API, focused on performance, scalability and flexibility.
This is a complete rewrite of the original prototype package, with an entirely
new API, focused on performance, scalability and flexibility.
### Added
- Add support for Python/Gurobipy and Julia/JuMP, in addition to the existing Python/Pyomo interface.
- Add six new random instance generators (bin packing, capacitated p-median, set cover, set packing, unit commitment, vertex cover), in addition to the three existing generators (multiknapsack, stable set, tsp).
- Collect some additional raw training data (e.g. basis status, reduced costs, etc)
- Add new primal solution ML strategies (memorizing, independent vars and joint vars)
"- Python version, compatible with the Pyomo and Gurobipy modeling languages,\n",
"- Julia version, compatible with the JuMP modeling language.\n",
"\n",
"In this tutorial, we will demonstrate how to use and install the Python/Gurobipy version of the package. The first step is to install Python 3.8+ in your computer. See the [official Python website for more instructions](https://www.python.org/downloads/). After Python is installed, we proceed to install MIPLearn using `pip`:\n",
"In this tutorial, we will demonstrate how to use and install the Python/Gurobipy version of the package. The first step is to install Python 3.9+ in your computer. See the [official Python website for more instructions](https://www.python.org/downloads/). After Python is installed, we proceed to install MIPLearn using `pip`:\n",
"\n",
"```\n",
"$ pip install MIPLearn==0.4\n",
"```\n",
"\n",
"In addition to MIPLearn itself, we will also install Gurobi 10.0, a state-of-the-art commercial MILP solver. This step also install a demo license for Gurobi, which should able to solve the small optimization problems in this tutorial. A license is required for solving larger-scale problems.\n",
"- Python version, compatible with the Pyomo and Gurobipy modeling languages,\n",
"- Julia version, compatible with the JuMP modeling language.\n",
"\n",
"In this tutorial, we will demonstrate how to use and install the Python/Pyomo version of the package. The first step is to install Python 3.8+ in your computer. See the [official Python website for more instructions](https://www.python.org/downloads/). After Python is installed, we proceed to install MIPLearn using `pip`:\n",
"In this tutorial, we will demonstrate how to use and install the Python/Pyomo version of the package. The first step is to install Python 3.9+ in your computer. See the [official Python website for more instructions](https://www.python.org/downloads/). After Python is installed, we proceed to install MIPLearn using `pip`:\n",
"\n",
"```\n",
"$ pip install MIPLearn==0.4\n",
"```\n",
"\n",
"In addition to MIPLearn itself, we will also install Gurobi 10.0, a state-of-the-art commercial MILP solver. This step also install a demo license for Gurobi, which should able to solve the small optimization problems in this tutorial. A license is required for solving larger-scale problems.\n",