Compare commits
2 Commits
a306f0df26
...
1c6912cc51
Author | SHA1 | Date |
---|---|---|
|
1c6912cc51 | 4 months ago |
|
eb914a4bdd | 4 months ago |
@ -0,0 +1,111 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2025, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Union, Optional, Any
|
||||
|
||||
import gurobipy as gp
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
from gurobipy import quicksum
|
||||
from networkx import Graph
|
||||
from scipy.stats.distributions import rv_frozen
|
||||
|
||||
from miplearn.io import read_pkl_gz
|
||||
from miplearn.problems import _gurobipy_set_params
|
||||
from miplearn.solvers.gurobi import GurobiModel
|
||||
|
||||
|
||||
@dataclass
|
||||
class MaxCutData:
|
||||
graph: Graph
|
||||
weights: np.ndarray
|
||||
|
||||
|
||||
class MaxCutGenerator:
|
||||
"""
|
||||
Random instance generator for the Maximum Cut Problem.
|
||||
|
||||
The generator operates in two modes. When `fix_graph=True`, a single random
|
||||
Erdős-Rényi graph $G_{n,p}$ is generated during initialization, with parameters $n$
|
||||
and $p$ drawn from their respective probability distributions. For each instance,
|
||||
only edge weights are randomly sampled from the set {1, -1}, while the graph
|
||||
structure remains fixed.
|
||||
|
||||
When `fix_graph=False`, both the graph structure and edge weights are randomly
|
||||
generated for each instance.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n: rv_frozen,
|
||||
p: rv_frozen,
|
||||
fix_graph: bool,
|
||||
):
|
||||
"""
|
||||
Initialize the problem generator.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n: rv_discrete
|
||||
Probability distribution for the number of nodes.
|
||||
p: rv_continuous
|
||||
Probability distribution for the graph density.
|
||||
fix_graph: bool
|
||||
Controls graph generation for instances. If false, a new random graph is
|
||||
generated for each instance. If true, the same graph is reused across instances.
|
||||
"""
|
||||
assert isinstance(n, rv_frozen), "n should be a SciPy probability distribution"
|
||||
assert isinstance(p, rv_frozen), "p should be a SciPy probability distribution"
|
||||
self.n = n
|
||||
self.p = p
|
||||
self.fix_graph = fix_graph
|
||||
self.graph = None
|
||||
if fix_graph:
|
||||
self.graph = self._generate_graph()
|
||||
|
||||
def generate(self, n_samples: int) -> List[MaxCutData]:
|
||||
def _sample() -> MaxCutData:
|
||||
if self.graph is not None:
|
||||
graph = self.graph
|
||||
else:
|
||||
graph = self._generate_graph()
|
||||
m = graph.number_of_edges()
|
||||
weights = np.random.randint(2, size=(m,)) * 2 - 1
|
||||
return MaxCutData(graph, weights)
|
||||
|
||||
return [_sample() for _ in range(n_samples)]
|
||||
|
||||
def _generate_graph(self) -> Graph:
|
||||
return nx.generators.random_graphs.binomial_graph(self.n.rvs(), self.p.rvs())
|
||||
|
||||
def build_maxcut_model_gurobipy(
|
||||
data: Union[str, MaxCutData],
|
||||
params: Optional[dict[str, Any]] = None,
|
||||
) -> GurobiModel:
|
||||
# Initialize model
|
||||
model = gp.Model()
|
||||
_gurobipy_set_params(model, params)
|
||||
|
||||
# Read data
|
||||
data = _maxcut_read(data)
|
||||
nodes = list(data.graph.nodes())
|
||||
edges = list(data.graph.edges())
|
||||
|
||||
# Add decision variables
|
||||
x = model.addVars(nodes, vtype=gp.GRB.BINARY, name="x")
|
||||
|
||||
# Add the objective function
|
||||
model.setObjective(quicksum(
|
||||
- data.weights[i] * x[e[0]] * (1 - x[e[1]]) for (i, e) in enumerate(edges)
|
||||
))
|
||||
|
||||
model.update()
|
||||
return GurobiModel(model)
|
||||
|
||||
def _maxcut_read(data: Union[str, MaxCutData]) -> MaxCutData:
|
||||
if isinstance(data, str):
|
||||
data = read_pkl_gz(data)
|
||||
assert isinstance(data, MaxCutData)
|
||||
return data
|
@ -0,0 +1,57 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2025, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
|
||||
from miplearn.problems.maxcut import MaxCutGenerator, build_maxcut_model_gurobipy
|
||||
from scipy.stats import randint, uniform
|
||||
|
||||
def _set_seed():
|
||||
random.seed(42)
|
||||
np.random.seed(42)
|
||||
|
||||
def test_maxcut_generator_not_fixed() -> None:
|
||||
_set_seed()
|
||||
gen = MaxCutGenerator(
|
||||
n=randint(low=5, high=6),
|
||||
p=uniform(loc=0.5, scale=0.0),
|
||||
fix_graph=False,
|
||||
)
|
||||
data = gen.generate(3)
|
||||
assert len(data) == 3
|
||||
assert list(data[0].graph.nodes()) == [0, 1, 2, 3, 4]
|
||||
assert list(data[0].graph.edges()) == [(0, 2), (0, 3), (0, 4), (2, 3), (2, 4), (3, 4)]
|
||||
assert data[0].weights.tolist() == [-1, 1, -1, -1, -1, 1]
|
||||
assert list(data[1].graph.nodes()) == [0, 1, 2, 3, 4]
|
||||
assert list(data[1].graph.edges()) == [(0, 1), (0, 3), (0, 4), (1, 4), (3, 4)]
|
||||
assert data[1].weights.tolist() == [-1, -1, -1, 1, -1]
|
||||
|
||||
def test_maxcut_generator_fixed() -> None:
|
||||
random.seed(42)
|
||||
np.random.seed(42)
|
||||
gen = MaxCutGenerator(
|
||||
n=randint(low=5, high=6),
|
||||
p=uniform(loc=0.5, scale=0.0),
|
||||
fix_graph=True,
|
||||
)
|
||||
data = gen.generate(3)
|
||||
assert len(data) == 3
|
||||
assert list(data[0].graph.nodes()) == [0, 1, 2, 3, 4]
|
||||
assert list(data[0].graph.edges()) == [(0, 2), (0, 3), (0, 4), (2, 3), (2, 4), (3, 4)]
|
||||
assert data[0].weights.tolist() == [-1, 1, -1, -1, -1, 1]
|
||||
assert list(data[1].graph.nodes()) == [0, 1, 2, 3, 4]
|
||||
assert list(data[1].graph.edges()) == [(0, 2), (0, 3), (0, 4), (2, 3), (2, 4), (3, 4)]
|
||||
assert data[1].weights.tolist() == [-1, -1, -1, 1, -1, -1]
|
||||
|
||||
def test_maxcut_model():
|
||||
_set_seed()
|
||||
data = MaxCutGenerator(
|
||||
n=randint(low=20, high=21),
|
||||
p=uniform(loc=0.5, scale=0.0),
|
||||
fix_graph=True,
|
||||
).generate(1)[0]
|
||||
model = build_maxcut_model_gurobipy(data)
|
||||
model.optimize()
|
||||
assert model.inner.ObjVal == -26
|
Loading…
Reference in new issue