# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import logging from typing import List, Dict, Any from unittest.mock import Mock import numpy as np from sklearn.dummy import DummyClassifier from miplearn.components.primal.actions import SetWarmStart from miplearn.components.primal.mem import ( MemorizingPrimalComponent, SelectTopSolutions, MergeTopSolutions, ) from miplearn.extractors.abstract import FeaturesExtractor logger = logging.getLogger(__name__) def test_mem_component( multiknapsack_h5: List[str], default_extractor: FeaturesExtractor ) -> None: # Create mock classifier clf = Mock(wraps=DummyClassifier()) # Create and fit component comp = MemorizingPrimalComponent( clf, extractor=default_extractor, constructor=SelectTopSolutions(2), action=SetWarmStart(), ) comp.fit(multiknapsack_h5) # Should call fit method with correct arguments clf.fit.assert_called() x, y = clf.fit.call_args.args assert x.shape == (3, 100) assert y.tolist() == [0, 1, 2] # Should store solutions assert comp.solutions_ is not None assert comp.solutions_.shape == (3, 100) assert comp.bin_var_names_ is not None assert len(comp.bin_var_names_) == 100 # Call before-mip stats: Dict[str, Any] = {} model = Mock() comp.before_mip(multiknapsack_h5[0], model, stats) # Should call predict_proba with correct args clf.predict_proba.assert_called() (x_test,) = clf.predict_proba.call_args.args assert x_test.shape == (1, 100) # Should set warm starts model.set_warm_starts.assert_called() names, starts, _ = model.set_warm_starts.call_args.args assert len(names) == 100 assert starts.shape == (2, 100) assert np.all(starts[0, :] == comp.solutions_[0, :]) assert np.all(starts[1, :] == comp.solutions_[1, :]) def test_merge_top_solutions() -> None: solutions = np.array( [ [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 1], [0, 1, 1, 1], [1, 1, 1, 1], ] ) y_proba = np.array([0.25, 0.25, 0.25, 0.25, 0]) starts = MergeTopSolutions(k=4, thresholds=[0.25, 0.75]).construct( y_proba, solutions ) assert starts.shape == (1, 4) assert starts[0, 0] == 0 assert starts[0, 1] == 1 assert np.isnan(starts[0, 2]) assert starts[0, 3] == 1