# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import numpy as np from sklearn.neighbors import KNeighborsClassifier from miplearn.classifiers.evaluator import ClassifierEvaluator def test_evaluator(): clf_a = KNeighborsClassifier(n_neighbors=1) clf_b = KNeighborsClassifier(n_neighbors=2) x_train = np.array([[0, 0], [1, 0]]) y_train = np.array([0, 1]) clf_a.fit(x_train, y_train) clf_b.fit(x_train, y_train) ev = ClassifierEvaluator() assert ev.evaluate(clf_a, x_train, y_train) == 1.0 assert ev.evaluate(clf_b, x_train, y_train) == 0.5