# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import numpy as np from numpy.linalg import norm from miplearn.classifiers.counting import CountingClassifier E = 0.1 def test_counting(): clf = CountingClassifier() clf.fit(np.zeros((8, 25)), [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0]) expected_proba = np.array([[0.375, 0.625], [0.375, 0.625]]) actual_proba = clf.predict_proba(np.zeros((2, 25))) assert norm(actual_proba - expected_proba) < E