Module miplearn.components.steps.convert_tight
Expand source code
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import logging
import random
from copy import deepcopy
import numpy as np
from tqdm import tqdm
from miplearn.classifiers.counting import CountingClassifier
from miplearn.components import classifier_evaluation_dict
from miplearn.components.component import Component
from miplearn.components.steps.drop_redundant import DropRedundantInequalitiesStep
from miplearn.extractors import InstanceIterator
logger = logging.getLogger(__name__)
class ConvertTightIneqsIntoEqsStep(Component):
"""
Component that predicts which inequality constraints are likely to be binding in
the LP relaxation of the problem and converts them into equality constraints.
This component always makes sure that the conversion process does not affect the
feasibility of the problem. It can also, optionally, make sure that it does not affect
the optimality, but this may be expensive.
This component does not work on MIPs. All integrality constraints must be relaxed
before this component is used.
"""
def __init__(
self,
classifier=CountingClassifier(),
threshold=0.95,
slack_tolerance=0.0,
check_optimality=False,
):
self.classifiers = {}
self.classifier_prototype = classifier
self.threshold = threshold
self.slack_tolerance = slack_tolerance
self.check_optimality = check_optimality
self.converted = []
self.original_sense = {}
def before_solve(self, solver, instance, _):
logger.info("Predicting tight LP constraints...")
x, constraints = DropRedundantInequalitiesStep._x_test(
instance,
constraint_ids=solver.internal_solver.get_constraint_ids(),
)
y = self.predict(x)
self.n_converted = 0
self.n_restored = 0
self.n_kept = 0
self.n_infeasible_iterations = 0
self.n_suboptimal_iterations = 0
for category in y.keys():
for i in range(len(y[category])):
if y[category][i][0] == 1:
cid = constraints[category][i]
s = solver.internal_solver.get_constraint_sense(cid)
self.original_sense[cid] = s
solver.internal_solver.set_constraint_sense(cid, "=")
self.converted += [cid]
self.n_converted += 1
else:
self.n_kept += 1
logger.info(f"Converted {self.n_converted} inequalities")
def after_solve(
self,
solver,
instance,
model,
stats,
training_data,
):
if "slacks" not in training_data.keys():
training_data["slacks"] = solver.internal_solver.get_inequality_slacks()
stats["ConvertTight: Kept"] = self.n_kept
stats["ConvertTight: Converted"] = self.n_converted
stats["ConvertTight: Restored"] = self.n_restored
stats["ConvertTight: Inf iterations"] = self.n_infeasible_iterations
stats["ConvertTight: Subopt iterations"] = self.n_suboptimal_iterations
def fit(self, training_instances):
logger.debug("Extracting x and y...")
x = self.x(training_instances)
y = self.y(training_instances)
logger.debug("Fitting...")
for category in tqdm(x.keys(), desc="Fit (rlx:conv_ineqs)"):
if category not in self.classifiers:
self.classifiers[category] = deepcopy(self.classifier_prototype)
self.classifiers[category].fit(x[category], y[category])
def x(self, instances):
return DropRedundantInequalitiesStep._x_train(instances)
def y(self, instances):
y = {}
for instance in tqdm(
InstanceIterator(instances),
desc="Extract (rlx:conv_ineqs:y)",
disable=len(instances) < 5,
):
for (cid, slack) in instance.training_data[0]["slacks"].items():
category = instance.get_constraint_category(cid)
if category is None:
continue
if category not in y:
y[category] = []
if 0 <= slack <= self.slack_tolerance:
y[category] += [[1]]
else:
y[category] += [[0]]
return y
def predict(self, x):
y = {}
for (category, x_cat) in x.items():
if category not in self.classifiers:
continue
y[category] = []
x_cat = np.array(x_cat)
proba = self.classifiers[category].predict_proba(x_cat)
for i in range(len(proba)):
if proba[i][1] >= self.threshold:
y[category] += [[1]]
else:
y[category] += [[0]]
return y
def evaluate(self, instance):
x = self.x([instance])
y_true = self.y([instance])
y_pred = self.predict(x)
tp, tn, fp, fn = 0, 0, 0, 0
for category in y_true.keys():
for i in range(len(y_true[category])):
if y_pred[category][i][0] == 1:
if y_true[category][i][0] == 1:
tp += 1
else:
fp += 1
else:
if y_true[category][i][0] == 1:
fn += 1
else:
tn += 1
return classifier_evaluation_dict(tp, tn, fp, fn)
def iteration_cb(self, solver, instance, model):
is_infeasible, is_suboptimal = False, False
restored = []
def check_pi(msense, csense, pi):
if csense == "=":
return True
if msense == "max":
if csense == "<":
return pi >= 0
else:
return pi <= 0
else:
if csense == ">":
return pi >= 0
else:
return pi <= 0
def restore(cid):
nonlocal restored
csense = self.original_sense[cid]
solver.internal_solver.set_constraint_sense(cid, csense)
restored += [cid]
if solver.internal_solver.is_infeasible():
for cid in self.converted:
pi = solver.internal_solver.get_dual(cid)
if abs(pi) > 0:
is_infeasible = True
restore(cid)
elif self.check_optimality:
random.shuffle(self.converted)
n_restored = 0
for cid in self.converted:
if n_restored >= 100:
break
pi = solver.internal_solver.get_dual(cid)
csense = self.original_sense[cid]
msense = solver.internal_solver.get_sense()
if not check_pi(msense, csense, pi):
is_suboptimal = True
restore(cid)
n_restored += 1
for cid in restored:
self.converted.remove(cid)
if len(restored) > 0:
self.n_restored += len(restored)
if is_infeasible:
self.n_infeasible_iterations += 1
if is_suboptimal:
self.n_suboptimal_iterations += 1
logger.info(f"Restored {len(restored)} inequalities")
return True
else:
return False
Classes
class ConvertTightIneqsIntoEqsStep (classifier=CountingClassifier(mean=None), threshold=0.95, slack_tolerance=0.0, check_optimality=False)
-
Component that predicts which inequality constraints are likely to be binding in the LP relaxation of the problem and converts them into equality constraints.
This component always makes sure that the conversion process does not affect the feasibility of the problem. It can also, optionally, make sure that it does not affect the optimality, but this may be expensive.
This component does not work on MIPs. All integrality constraints must be relaxed before this component is used.
Expand source code
class ConvertTightIneqsIntoEqsStep(Component): """ Component that predicts which inequality constraints are likely to be binding in the LP relaxation of the problem and converts them into equality constraints. This component always makes sure that the conversion process does not affect the feasibility of the problem. It can also, optionally, make sure that it does not affect the optimality, but this may be expensive. This component does not work on MIPs. All integrality constraints must be relaxed before this component is used. """ def __init__( self, classifier=CountingClassifier(), threshold=0.95, slack_tolerance=0.0, check_optimality=False, ): self.classifiers = {} self.classifier_prototype = classifier self.threshold = threshold self.slack_tolerance = slack_tolerance self.check_optimality = check_optimality self.converted = [] self.original_sense = {} def before_solve(self, solver, instance, _): logger.info("Predicting tight LP constraints...") x, constraints = DropRedundantInequalitiesStep._x_test( instance, constraint_ids=solver.internal_solver.get_constraint_ids(), ) y = self.predict(x) self.n_converted = 0 self.n_restored = 0 self.n_kept = 0 self.n_infeasible_iterations = 0 self.n_suboptimal_iterations = 0 for category in y.keys(): for i in range(len(y[category])): if y[category][i][0] == 1: cid = constraints[category][i] s = solver.internal_solver.get_constraint_sense(cid) self.original_sense[cid] = s solver.internal_solver.set_constraint_sense(cid, "=") self.converted += [cid] self.n_converted += 1 else: self.n_kept += 1 logger.info(f"Converted {self.n_converted} inequalities") def after_solve( self, solver, instance, model, stats, training_data, ): if "slacks" not in training_data.keys(): training_data["slacks"] = solver.internal_solver.get_inequality_slacks() stats["ConvertTight: Kept"] = self.n_kept stats["ConvertTight: Converted"] = self.n_converted stats["ConvertTight: Restored"] = self.n_restored stats["ConvertTight: Inf iterations"] = self.n_infeasible_iterations stats["ConvertTight: Subopt iterations"] = self.n_suboptimal_iterations def fit(self, training_instances): logger.debug("Extracting x and y...") x = self.x(training_instances) y = self.y(training_instances) logger.debug("Fitting...") for category in tqdm(x.keys(), desc="Fit (rlx:conv_ineqs)"): if category not in self.classifiers: self.classifiers[category] = deepcopy(self.classifier_prototype) self.classifiers[category].fit(x[category], y[category]) def x(self, instances): return DropRedundantInequalitiesStep._x_train(instances) def y(self, instances): y = {} for instance in tqdm( InstanceIterator(instances), desc="Extract (rlx:conv_ineqs:y)", disable=len(instances) < 5, ): for (cid, slack) in instance.training_data[0]["slacks"].items(): category = instance.get_constraint_category(cid) if category is None: continue if category not in y: y[category] = [] if 0 <= slack <= self.slack_tolerance: y[category] += [[1]] else: y[category] += [[0]] return y def predict(self, x): y = {} for (category, x_cat) in x.items(): if category not in self.classifiers: continue y[category] = [] x_cat = np.array(x_cat) proba = self.classifiers[category].predict_proba(x_cat) for i in range(len(proba)): if proba[i][1] >= self.threshold: y[category] += [[1]] else: y[category] += [[0]] return y def evaluate(self, instance): x = self.x([instance]) y_true = self.y([instance]) y_pred = self.predict(x) tp, tn, fp, fn = 0, 0, 0, 0 for category in y_true.keys(): for i in range(len(y_true[category])): if y_pred[category][i][0] == 1: if y_true[category][i][0] == 1: tp += 1 else: fp += 1 else: if y_true[category][i][0] == 1: fn += 1 else: tn += 1 return classifier_evaluation_dict(tp, tn, fp, fn) def iteration_cb(self, solver, instance, model): is_infeasible, is_suboptimal = False, False restored = [] def check_pi(msense, csense, pi): if csense == "=": return True if msense == "max": if csense == "<": return pi >= 0 else: return pi <= 0 else: if csense == ">": return pi >= 0 else: return pi <= 0 def restore(cid): nonlocal restored csense = self.original_sense[cid] solver.internal_solver.set_constraint_sense(cid, csense) restored += [cid] if solver.internal_solver.is_infeasible(): for cid in self.converted: pi = solver.internal_solver.get_dual(cid) if abs(pi) > 0: is_infeasible = True restore(cid) elif self.check_optimality: random.shuffle(self.converted) n_restored = 0 for cid in self.converted: if n_restored >= 100: break pi = solver.internal_solver.get_dual(cid) csense = self.original_sense[cid] msense = solver.internal_solver.get_sense() if not check_pi(msense, csense, pi): is_suboptimal = True restore(cid) n_restored += 1 for cid in restored: self.converted.remove(cid) if len(restored) > 0: self.n_restored += len(restored) if is_infeasible: self.n_infeasible_iterations += 1 if is_suboptimal: self.n_suboptimal_iterations += 1 logger.info(f"Restored {len(restored)} inequalities") return True else: return False
Ancestors
- Component
- abc.ABC
Methods
def evaluate(self, instance)
-
Expand source code
def evaluate(self, instance): x = self.x([instance]) y_true = self.y([instance]) y_pred = self.predict(x) tp, tn, fp, fn = 0, 0, 0, 0 for category in y_true.keys(): for i in range(len(y_true[category])): if y_pred[category][i][0] == 1: if y_true[category][i][0] == 1: tp += 1 else: fp += 1 else: if y_true[category][i][0] == 1: fn += 1 else: tn += 1 return classifier_evaluation_dict(tp, tn, fp, fn)
def fit(self, training_instances)
-
Expand source code
def fit(self, training_instances): logger.debug("Extracting x and y...") x = self.x(training_instances) y = self.y(training_instances) logger.debug("Fitting...") for category in tqdm(x.keys(), desc="Fit (rlx:conv_ineqs)"): if category not in self.classifiers: self.classifiers[category] = deepcopy(self.classifier_prototype) self.classifiers[category].fit(x[category], y[category])
def predict(self, x)
-
Expand source code
def predict(self, x): y = {} for (category, x_cat) in x.items(): if category not in self.classifiers: continue y[category] = [] x_cat = np.array(x_cat) proba = self.classifiers[category].predict_proba(x_cat) for i in range(len(proba)): if proba[i][1] >= self.threshold: y[category] += [[1]] else: y[category] += [[0]] return y
def x(self, instances)
-
Expand source code
def x(self, instances): return DropRedundantInequalitiesStep._x_train(instances)
def y(self, instances)
-
Expand source code
def y(self, instances): y = {} for instance in tqdm( InstanceIterator(instances), desc="Extract (rlx:conv_ineqs:y)", disable=len(instances) < 5, ): for (cid, slack) in instance.training_data[0]["slacks"].items(): category = instance.get_constraint_category(cid) if category is None: continue if category not in y: y[category] = [] if 0 <= slack <= self.slack_tolerance: y[category] += [[1]] else: y[category] += [[0]] return y
Inherited members