# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from abc import ABC, abstractmethod from typing import Dict, Optional, Any import h5py import numpy as np from overrides import overrides class Sample(ABC): """Abstract dictionary-like class that stores training data.""" @abstractmethod def get(self, key: str) -> Optional[Any]: pass @abstractmethod def put(self, key: str, value: Any) -> None: """ Add a new key/value pair to the sample. If the key already exists, the previous value is silently replaced. Only the following data types are supported: - str, bool, int, float - List[str], List[bool], List[int], List[float] """ pass def _assert_supported(self, value: Any) -> None: def _is_primitive(v: Any) -> bool: if isinstance(v, (str, bool, int, float)): return True return False if _is_primitive(value): return if isinstance(value, list): if _is_primitive(value[0]): return assert False, f"Value has unsupported type: {value}" class MemorySample(Sample): """Dictionary-like class that stores training data in-memory.""" def __init__( self, data: Optional[Dict[str, Any]] = None, ) -> None: if data is None: data = {} self._data: Dict[str, Any] = data @overrides def get(self, key: str) -> Optional[Any]: if key in self._data: return self._data[key] else: return None @overrides def put(self, key: str, value: Any) -> None: # self._assert_supported(value) self._data[key] = value class Hdf5Sample(Sample): """ Dictionary-like class that stores training data in an HDF5 file. Unlike MemorySample, this class only loads to memory the parts of the data set that are actually accessed, and therefore it is more scalable. """ def __init__(self, filename: str) -> None: self.file = h5py.File(filename, "r+") @overrides def get(self, key: str) -> Optional[Any]: ds = self.file[key] if h5py.check_string_dtype(ds.dtype): if ds.shape == (): return ds.asstr()[()] else: return ds.asstr()[:].tolist() else: if ds.shape == (): return ds[()].tolist() else: return ds[:].tolist() @overrides def put(self, key: str, value: Any) -> None: self._assert_supported(value) if key in self.file: del self.file[key] self.file.create_dataset(key, data=value)