# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import os.path from scipy.stats import randint from miplearn.benchmark import BenchmarkRunner from miplearn.problems.stab import MaxWeightStableSetGenerator from miplearn.solvers.learning import LearningSolver def test_benchmark() -> None: for n_jobs in [1, 4]: # Generate training and test instances generator = MaxWeightStableSetGenerator(n=randint(low=25, high=26)) train_instances = generator.generate(5) test_instances = generator.generate(3) # Solve training instances training_solver = LearningSolver() training_solver.parallel_solve(train_instances, n_jobs=n_jobs) # type: ignore # Benchmark test_solvers = { "Strategy A": LearningSolver(), "Strategy B": LearningSolver(), } benchmark = BenchmarkRunner(test_solvers) benchmark.fit(train_instances, n_jobs=n_jobs) # type: ignore benchmark.parallel_solve( test_instances, # type: ignore n_jobs=n_jobs, n_trials=2, ) benchmark.write_csv("/tmp/benchmark.csv") assert os.path.isfile("/tmp/benchmark.csv") assert benchmark.results.values.shape == (12, 21)