Module miplearn.classifiers.evaluator
Expand source code
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from sklearn.metrics import roc_auc_score
class ClassifierEvaluator:
def __init__(self) -> None:
pass
def evaluate(self, clf, x_train, y_train):
# FIXME: use cross-validation
proba = clf.predict_proba(x_train)
return roc_auc_score(y_train, proba[:, 1])
Classes
class ClassifierEvaluator
-
Expand source code
class ClassifierEvaluator: def __init__(self) -> None: pass def evaluate(self, clf, x_train, y_train): # FIXME: use cross-validation proba = clf.predict_proba(x_train) return roc_auc_score(y_train, proba[:, 1])
Methods
def evaluate(self, clf, x_train, y_train)
-
Expand source code
def evaluate(self, clf, x_train, y_train): # FIXME: use cross-validation proba = clf.predict_proba(x_train) return roc_auc_score(y_train, proba[:, 1])