Module miplearn.components.cuts

Expand source code
#  MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
#  Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
#  Released under the modified BSD license. See COPYING.md for more details.

import logging
import sys
from copy import deepcopy
from typing import Any, Dict

import numpy as np
from tqdm.auto import tqdm

from miplearn.classifiers import Classifier
from miplearn.classifiers.counting import CountingClassifier
from miplearn.components import classifier_evaluation_dict
from miplearn.components.component import Component
from miplearn.extractors import InstanceFeaturesExtractor

logger = logging.getLogger(__name__)


class UserCutsComponent(Component):
    """
    A component that predicts which user cuts to enforce.
    """

    def __init__(
        self,
        classifier: Classifier = CountingClassifier(),
        threshold: float = 0.05,
    ):
        self.threshold: float = threshold
        self.classifier_prototype: Classifier = classifier
        self.classifiers: Dict[Any, Classifier] = {}

    def before_solve(self, solver, instance, model):
        instance.found_violated_user_cuts = []
        logger.info("Predicting violated user cuts...")
        violations = self.predict(instance)
        logger.info("Enforcing %d user cuts..." % len(violations))
        for v in violations:
            cut = instance.build_user_cut(model, v)
            solver.internal_solver.add_constraint(cut)

    def after_solve(
        self,
        solver,
        instance,
        model,
        results,
        training_data,
    ):
        pass

    def fit(self, training_instances):
        logger.debug("Fitting...")
        features = InstanceFeaturesExtractor().extract(training_instances)

        self.classifiers = {}
        violation_to_instance_idx = {}
        for (idx, instance) in enumerate(training_instances):
            if not hasattr(instance, "found_violated_user_cuts"):
                continue
            for v in instance.found_violated_user_cuts:
                if v not in self.classifiers:
                    self.classifiers[v] = deepcopy(self.classifier_prototype)
                    violation_to_instance_idx[v] = []
                violation_to_instance_idx[v] += [idx]

        for (v, classifier) in tqdm(
            self.classifiers.items(),
            desc="Fit (user cuts)",
            disable=not sys.stdout.isatty(),
        ):
            logger.debug("Training: %s" % (str(v)))
            label = np.zeros(len(training_instances))
            label[violation_to_instance_idx[v]] = 1.0
            classifier.fit(features, label)

    def predict(self, instance):
        violations = []
        features = InstanceFeaturesExtractor().extract([instance])
        for (v, classifier) in self.classifiers.items():
            proba = classifier.predict_proba(features)
            if proba[0][1] > self.threshold:
                violations += [v]
        return violations

    def evaluate(self, instances):
        results = {}
        all_violations = set()
        for instance in instances:
            all_violations |= set(instance.found_violated_user_cuts)
        for idx in tqdm(
            range(len(instances)),
            desc="Evaluate (lazy)",
            disable=not sys.stdout.isatty(),
        ):
            instance = instances[idx]
            condition_positive = set(instance.found_violated_user_cuts)
            condition_negative = all_violations - condition_positive
            pred_positive = set(self.predict(instance)) & all_violations
            pred_negative = all_violations - pred_positive
            tp = len(pred_positive & condition_positive)
            tn = len(pred_negative & condition_negative)
            fp = len(pred_positive & condition_negative)
            fn = len(pred_negative & condition_positive)
            results[idx] = classifier_evaluation_dict(tp, tn, fp, fn)
        return results

Classes

class UserCutsComponent (classifier=CountingClassifier(mean=None), threshold=0.05)

A component that predicts which user cuts to enforce.

Expand source code
class UserCutsComponent(Component):
    """
    A component that predicts which user cuts to enforce.
    """

    def __init__(
        self,
        classifier: Classifier = CountingClassifier(),
        threshold: float = 0.05,
    ):
        self.threshold: float = threshold
        self.classifier_prototype: Classifier = classifier
        self.classifiers: Dict[Any, Classifier] = {}

    def before_solve(self, solver, instance, model):
        instance.found_violated_user_cuts = []
        logger.info("Predicting violated user cuts...")
        violations = self.predict(instance)
        logger.info("Enforcing %d user cuts..." % len(violations))
        for v in violations:
            cut = instance.build_user_cut(model, v)
            solver.internal_solver.add_constraint(cut)

    def after_solve(
        self,
        solver,
        instance,
        model,
        results,
        training_data,
    ):
        pass

    def fit(self, training_instances):
        logger.debug("Fitting...")
        features = InstanceFeaturesExtractor().extract(training_instances)

        self.classifiers = {}
        violation_to_instance_idx = {}
        for (idx, instance) in enumerate(training_instances):
            if not hasattr(instance, "found_violated_user_cuts"):
                continue
            for v in instance.found_violated_user_cuts:
                if v not in self.classifiers:
                    self.classifiers[v] = deepcopy(self.classifier_prototype)
                    violation_to_instance_idx[v] = []
                violation_to_instance_idx[v] += [idx]

        for (v, classifier) in tqdm(
            self.classifiers.items(),
            desc="Fit (user cuts)",
            disable=not sys.stdout.isatty(),
        ):
            logger.debug("Training: %s" % (str(v)))
            label = np.zeros(len(training_instances))
            label[violation_to_instance_idx[v]] = 1.0
            classifier.fit(features, label)

    def predict(self, instance):
        violations = []
        features = InstanceFeaturesExtractor().extract([instance])
        for (v, classifier) in self.classifiers.items():
            proba = classifier.predict_proba(features)
            if proba[0][1] > self.threshold:
                violations += [v]
        return violations

    def evaluate(self, instances):
        results = {}
        all_violations = set()
        for instance in instances:
            all_violations |= set(instance.found_violated_user_cuts)
        for idx in tqdm(
            range(len(instances)),
            desc="Evaluate (lazy)",
            disable=not sys.stdout.isatty(),
        ):
            instance = instances[idx]
            condition_positive = set(instance.found_violated_user_cuts)
            condition_negative = all_violations - condition_positive
            pred_positive = set(self.predict(instance)) & all_violations
            pred_negative = all_violations - pred_positive
            tp = len(pred_positive & condition_positive)
            tn = len(pred_negative & condition_negative)
            fp = len(pred_positive & condition_negative)
            fn = len(pred_negative & condition_positive)
            results[idx] = classifier_evaluation_dict(tp, tn, fp, fn)
        return results

Ancestors

Methods

def evaluate(self, instances)
Expand source code
def evaluate(self, instances):
    results = {}
    all_violations = set()
    for instance in instances:
        all_violations |= set(instance.found_violated_user_cuts)
    for idx in tqdm(
        range(len(instances)),
        desc="Evaluate (lazy)",
        disable=not sys.stdout.isatty(),
    ):
        instance = instances[idx]
        condition_positive = set(instance.found_violated_user_cuts)
        condition_negative = all_violations - condition_positive
        pred_positive = set(self.predict(instance)) & all_violations
        pred_negative = all_violations - pred_positive
        tp = len(pred_positive & condition_positive)
        tn = len(pred_negative & condition_negative)
        fp = len(pred_positive & condition_negative)
        fn = len(pred_negative & condition_positive)
        results[idx] = classifier_evaluation_dict(tp, tn, fp, fn)
    return results
def fit(self, training_instances)
Expand source code
def fit(self, training_instances):
    logger.debug("Fitting...")
    features = InstanceFeaturesExtractor().extract(training_instances)

    self.classifiers = {}
    violation_to_instance_idx = {}
    for (idx, instance) in enumerate(training_instances):
        if not hasattr(instance, "found_violated_user_cuts"):
            continue
        for v in instance.found_violated_user_cuts:
            if v not in self.classifiers:
                self.classifiers[v] = deepcopy(self.classifier_prototype)
                violation_to_instance_idx[v] = []
            violation_to_instance_idx[v] += [idx]

    for (v, classifier) in tqdm(
        self.classifiers.items(),
        desc="Fit (user cuts)",
        disable=not sys.stdout.isatty(),
    ):
        logger.debug("Training: %s" % (str(v)))
        label = np.zeros(len(training_instances))
        label[violation_to_instance_idx[v]] = 1.0
        classifier.fit(features, label)
def predict(self, instance)
Expand source code
def predict(self, instance):
    violations = []
    features = InstanceFeaturesExtractor().extract([instance])
    for (v, classifier) in self.classifiers.items():
        proba = classifier.predict_proba(features)
        if proba[0][1] > self.threshold:
            violations += [v]
    return violations

Inherited members