# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import pickle import tempfile from miplearn import BranchPriorityComponent, GurobiPyomoSolver from miplearn import LearningSolver from . import _get_instance def test_learning_solver(): instance = _get_instance() for mode in ["exact", "heuristic"]: for internal_solver in ["cplex", "gurobi", GurobiPyomoSolver]: solver = LearningSolver(time_limit=300, gap_tolerance=1e-3, threads=1, solver=internal_solver, mode=mode) solver.solve(instance) assert instance.solution["x"][0] == 1.0 assert instance.solution["x"][1] == 0.0 assert instance.solution["x"][2] == 1.0 assert instance.solution["x"][3] == 1.0 assert instance.lower_bound == 1183.0 assert instance.upper_bound == 1183.0 assert round(instance.lp_solution["x"][0], 3) == 1.000 assert round(instance.lp_solution["x"][1], 3) == 0.923 assert round(instance.lp_solution["x"][2], 3) == 1.000 assert round(instance.lp_solution["x"][3], 3) == 0.000 assert round(instance.lp_value, 3) == 1287.923 assert instance.found_violated_lazy_constraints == [] assert instance.found_violated_user_cuts == [] assert len(instance.solver_log) > 100 solver.fit([instance]) solver.solve(instance) # Assert solver is picklable with tempfile.TemporaryFile() as file: pickle.dump(solver, file) def test_parallel_solve(): instances = [_get_instance() for _ in range(10)] solver = LearningSolver() results = solver.parallel_solve(instances, n_jobs=3) assert len(results) == 10 for instance in instances: assert len(instance.solution["x"].keys()) == 4 def test_add_components(): solver = LearningSolver(components=[]) solver.add(BranchPriorityComponent()) solver.add(BranchPriorityComponent()) assert len(solver.components) == 1 assert "BranchPriorityComponent" in solver.components