# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2025, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from dataclasses import dataclass from typing import List, Union, Optional, Any import gurobipy as gp import networkx as nx import numpy as np import pyomo.environ as pe from networkx import Graph from scipy.stats.distributions import rv_frozen from miplearn.io import read_pkl_gz from miplearn.problems import _gurobipy_set_params, _pyomo_set_params from miplearn.solvers.gurobi import GurobiModel from miplearn.solvers.pyomo import PyomoModel @dataclass class MaxCutData: graph: Graph weights: np.ndarray class MaxCutGenerator: """ Random instance generator for the Maximum Cut Problem. The generator operates in two modes. When `fix_graph=True`, a single random Erdős-Rényi graph $G_{n, p}$ is generated during initialization, with parameters $n$ and $p$ drawn from their respective probability distributions, and each edge is assigned a random weight drawn from the set {-1, 1}, with equal probability. To generate each instance variation, the generator randomly flips the sign of each edge weight with probability `w_jitter`. The graph remains the same across all variations. When `fix_graph=False`, a new random graph is generated for each instance, with random {-1,1} edge weights. """ def __init__( self, n: rv_frozen, p: rv_frozen, w_jitter: float = 0.0, fix_graph: bool = False, ): """ Initialize the problem generator. Parameters ---------- n: rv_discrete Probability distribution for the number of nodes. p: rv_continuous Probability distribution for the graph density. w_jitter: float Probability that each edge weight flips from -1 to 1. Only applicable if fix_graph is True. fix_graph: bool Controls graph generation for instances. If false, a new random graph is generated for each instance. If true, the same graph is reused across instances. """ assert isinstance(n, rv_frozen), "n should be a SciPy probability distribution" assert isinstance(p, rv_frozen), "p should be a SciPy probability distribution" self.n = n self.p = p self.w_jitter = w_jitter self.fix_graph = fix_graph self.graph = None self.weights = None if fix_graph: self.graph = self._generate_graph() self.weights = self._generate_weights(self.graph) def generate(self, n_samples: int) -> List[MaxCutData]: def _sample() -> MaxCutData: if self.graph is not None: graph = self.graph weights = self.weights jitter = self._generate_jitter(graph) weights = weights * jitter else: graph = self._generate_graph() weights = self._generate_weights(graph) return MaxCutData(graph, weights) return [_sample() for _ in range(n_samples)] def _generate_graph(self) -> Graph: return nx.generators.random_graphs.binomial_graph(self.n.rvs(), self.p.rvs()) @staticmethod def _generate_weights(graph: Graph) -> np.ndarray: m = graph.number_of_edges() return np.random.randint(2, size=(m,)) * 2 - 1 def _generate_jitter(self, graph: Graph) -> np.ndarray: m = graph.number_of_edges() return (np.random.rand(m) >= self.w_jitter).astype(int) * 2 - 1 def build_maxcut_model_gurobipy( data: Union[str, MaxCutData], params: Optional[dict[str, Any]] = None, ) -> GurobiModel: # Initialize model model = gp.Model() _gurobipy_set_params(model, params) # Read data data = _maxcut_read(data) nodes = list(data.graph.nodes()) edges = list(data.graph.edges()) # Add decision variables x = model.addVars(nodes, vtype=gp.GRB.BINARY, name="x") # Add the objective function model.setObjective( gp.quicksum( -data.weights[i] * x[e[0]] * (1 - x[e[1]]) for (i, e) in enumerate(edges) ) ) model.update() return GurobiModel(model) def build_maxcut_model_pyomo( data: Union[str, MaxCutData], solver: str = "gurobi_persistent", params: Optional[dict[str, Any]] = None, ) -> PyomoModel: # Initialize model model = pe.ConcreteModel() # Read data data = _maxcut_read(data) nodes = pe.Set(initialize=list(data.graph.nodes)) edges = list(data.graph.edges()) # Add decision variables model.x = pe.Var(nodes, domain=pe.Binary, name="x") # Add the objective function model.obj = pe.Objective( expr=pe.quicksum( -data.weights[i] * model.x[e[0]] + data.weights[i] * model.x[e[0]] * model.x[e[1]] for (i, e) in enumerate(edges) ), sense=pe.minimize, ) model.pprint() pm = PyomoModel(model, solver) _pyomo_set_params(model, params, solver) return pm def _maxcut_read(data: Union[str, MaxCutData]) -> MaxCutData: if isinstance(data, str): data = read_pkl_gz(data) assert isinstance(data, MaxCutData) return data