# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import logging from copy import deepcopy import numpy as np from tqdm import tqdm from miplearn import Component from miplearn.classifiers.counting import CountingClassifier from miplearn.components import classifier_evaluation_dict from miplearn.extractors import InstanceIterator logger = logging.getLogger(__name__) class ConvertTightIneqsIntoEqsStep(Component): """ Component that predicts which inequality constraints are likely to be binding in the LP relaxation of the problem and converts them into equality constraints. Optionally double checks that the conversion process did not affect feasibility or optimality of the problem. This component does not work on MIPs. All integrality constraints must be relaxed before this component is used. """ def __init__( self, classifier=CountingClassifier(), threshold=0.95, slack_tolerance=0.0, ): self.classifiers = {} self.classifier_prototype = classifier self.threshold = threshold self.slack_tolerance = slack_tolerance def before_solve(self, solver, instance, _): logger.info("Predicting tight LP constraints...") cids = solver.internal_solver.get_constraint_ids() x, constraints = self.x( [instance], constraint_ids=cids, return_constraints=True, ) y = self.predict(x) n_converted = 0 for category in y.keys(): for i in range(len(y[category])): if y[category][i][0] == 1: cid = constraints[category][i] solver.internal_solver.set_constraint_sense(cid, "=") n_converted += 1 logger.info(f"Converted {n_converted} inequalities into equalities") def after_solve(self, solver, instance, model, results): instance.slacks = solver.internal_solver.get_constraint_slacks() def fit(self, training_instances): logger.debug("Extracting x and y...") x = self.x(training_instances) y = self.y(training_instances) logger.debug("Fitting...") for category in tqdm(x.keys(), desc="Fit (rlx:conv_ineqs)"): if category not in self.classifiers: self.classifiers[category] = deepcopy(self.classifier_prototype) self.classifiers[category].fit(x[category], y[category]) def x( self, instances, constraint_ids=None, return_constraints=False, ): x = {} constraints = {} for instance in tqdm( InstanceIterator(instances), desc="Extract (rlx:conv_ineqs:x)", disable=len(instances) < 5, ): if constraint_ids is not None: cids = constraint_ids else: cids = instance.slacks.keys() for cid in cids: category = instance.get_constraint_category(cid) if category is None: continue if category not in x: x[category] = [] constraints[category] = [] x[category] += [instance.get_constraint_features(cid)] constraints[category] += [cid] if return_constraints: return x, constraints else: return x def y(self, instances): y = {} for instance in tqdm( InstanceIterator(instances), desc="Extract (rlx:conv_ineqs:y)", disable=len(instances) < 5, ): for (cid, slack) in instance.slacks.items(): category = instance.get_constraint_category(cid) if category is None: continue if category not in y: y[category] = [] if 0 <= slack <= self.slack_tolerance: y[category] += [[1]] else: y[category] += [[0]] return y def predict(self, x): y = {} for (category, x_cat) in x.items(): if category not in self.classifiers: continue y[category] = [] x_cat = np.array(x_cat) proba = self.classifiers[category].predict_proba(x_cat) for i in range(len(proba)): if proba[i][1] >= self.threshold: y[category] += [[1]] else: y[category] += [[0]] return y def evaluate(self, instance): x = self.x([instance]) y_true = self.y([instance]) y_pred = self.predict(x) tp, tn, fp, fn = 0, 0, 0, 0 for category in y_true.keys(): for i in range(len(y_true[category])): if y_pred[category][i][0] == 1: if y_true[category][i][0] == 1: tp += 1 else: fp += 1 else: if y_true[category][i][0] == 1: fn += 1 else: tn += 1 return classifier_evaluation_dict(tp, tn, fp, fn)