# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import numpy as np from scipy.stats import uniform, randint from miplearn.problems.multiknapsack import ( MultiKnapsackGenerator, MultiKnapsackData, build_multiknapsack_model, ) def test_knapsack_generator() -> None: np.random.seed(42) gen = MultiKnapsackGenerator( n=randint(low=5, high=6), m=randint(low=3, high=4), w=randint(low=0, high=1000), K=randint(low=500, high=501), u=uniform(loc=0.0, scale=1.0), alpha=uniform(loc=0.25, scale=0.0), fix_w=True, w_jitter=uniform(loc=0.9, scale=0.2), p_jitter=uniform(loc=0.9, scale=0.2), round=True, ) data = gen.generate(2) assert data[0].prices.tolist() == [433.0, 477.0, 802.0, 494.0, 458.0] assert data[0].capacities.tolist() == [458.0, 357.0, 392.0] assert data[0].weights.tolist() == [ [111.0, 392.0, 945.0, 276.0, 108.0], [64.0, 633.0, 20.0, 602.0, 110.0], [510.0, 203.0, 303.0, 469.0, 85.0], ] assert data[1].prices.tolist() == [344.0, 527.0, 658.0, 519.0, 460.0] assert data[1].capacities.tolist() == [449.0, 377.0, 380.0] assert data[1].weights.tolist() == [ [92.0, 473.0, 871.0, 264.0, 96.0], [67.0, 664.0, 21.0, 628.0, 129.0], [436.0, 209.0, 309.0, 481.0, 86.0], ] def test_knapsack_model() -> None: data = MultiKnapsackData( prices=np.array([344.0, 527.0, 658.0, 519.0, 460.0]), capacities=np.array([449.0, 377.0, 380.0]), weights=np.array( [ [92.0, 473.0, 871.0, 264.0, 96.0], [67.0, 664.0, 21.0, 628.0, 129.0], [436.0, 209.0, 309.0, 481.0, 86.0], ] ), ) model = build_multiknapsack_model(data) model.optimize() assert model.inner.objVal == -460.0