# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from tempfile import NamedTemporaryFile import numpy as np from scipy.stats import randint, uniform from miplearn.h5 import H5File from miplearn.problems.setcover import ( SetCoverData, build_setcover_model_gurobipy, SetCoverGenerator, build_setcover_model_pyomo, ) def test_set_cover_generator() -> None: np.random.seed(42) gen = SetCoverGenerator( n_elements=randint(low=3, high=4), n_sets=randint(low=5, high=6), costs=uniform(loc=0.0, scale=100.0), costs_jitter=uniform(loc=0.95, scale=0.10), density=uniform(loc=0.5, scale=0), K=uniform(loc=25, scale=0), fix_sets=False, ) data = gen.generate(2) assert data[0].costs.round(1).tolist() == [136.8, 86.2, 25.7, 27.3, 102.5] assert data[0].incidence_matrix.tolist() == [ [1, 0, 1, 0, 1], [1, 1, 0, 0, 0], [1, 0, 0, 1, 1], ] assert data[1].costs.round(1).tolist() == [63.5, 76.6, 48.1, 74.1, 93.3] assert data[1].incidence_matrix.tolist() == [ [1, 1, 0, 1, 1], [0, 1, 0, 1, 0], [0, 1, 1, 0, 0], ] def test_set_cover_generator_with_fixed_sets() -> None: np.random.seed(42) gen = SetCoverGenerator( n_elements=randint(low=3, high=4), n_sets=randint(low=5, high=6), costs=uniform(loc=0.0, scale=100.0), costs_jitter=uniform(loc=0.95, scale=0.10), density=uniform(loc=0.5, scale=0.00), fix_sets=True, ) data = gen.generate(3) assert data[0].costs.tolist() == [136.75, 86.17, 25.71, 27.31, 102.48] assert data[1].costs.tolist() == [135.38, 82.26, 26.92, 26.58, 98.28] assert data[2].costs.tolist() == [138.37, 85.15, 26.95, 27.22, 106.17] print(data[0].incidence_matrix) for i in range(3): assert data[i].incidence_matrix.tolist() == [ [1, 0, 1, 0, 1], [1, 1, 0, 0, 0], [1, 0, 0, 1, 1], ] def test_set_cover() -> None: data = SetCoverData( costs=np.array([5, 10, 12, 6, 8]), incidence_matrix=np.array( [ [1, 0, 0, 1, 0], [1, 1, 0, 0, 0], [0, 0, 1, 1, 1], ], ), ) for model in [ build_setcover_model_pyomo(data), build_setcover_model_gurobipy(data), ]: with NamedTemporaryFile() as tempfile: with H5File(tempfile.name) as h5: model.optimize() model.extract_after_mip(h5) assert h5.get_scalar("mip_obj_value") == 11.0