# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import logging import dill import pickle import tempfile import os from miplearn.solvers.gurobi import GurobiSolver from miplearn.solvers.learning import LearningSolver from . import _get_knapsack_instance, _get_internal_solvers logger = logging.getLogger(__name__) def test_learning_solver(): for mode in ["exact", "heuristic"]: for internal_solver in _get_internal_solvers(): logger.info("Solver: %s" % internal_solver) instance = _get_knapsack_instance(internal_solver) solver = LearningSolver( solver=internal_solver, mode=mode, ) solver.solve(instance) data = instance.training_data[0] assert data["Solution"]["x"][0] == 1.0 assert data["Solution"]["x"][1] == 0.0 assert data["Solution"]["x"][2] == 1.0 assert data["Solution"]["x"][3] == 1.0 assert data["Lower bound"] == 1183.0 assert data["Upper bound"] == 1183.0 assert round(data["LP solution"]["x"][0], 3) == 1.000 assert round(data["LP solution"]["x"][1], 3) == 0.923 assert round(data["LP solution"]["x"][2], 3) == 1.000 assert round(data["LP solution"]["x"][3], 3) == 0.000 assert round(data["LP value"], 3) == 1287.923 assert len(data["MIP log"]) > 100 solver.fit([instance]) solver.solve(instance) # Assert solver is picklable with tempfile.TemporaryFile() as file: dill.dump(solver, file) def test_solve_without_lp(): for internal_solver in _get_internal_solvers(): logger.info("Solver: %s" % internal_solver) instance = _get_knapsack_instance(internal_solver) solver = LearningSolver( solver=internal_solver, solve_lp_first=False, ) solver.solve(instance) solver.fit([instance]) solver.solve(instance) def test_parallel_solve(): for internal_solver in _get_internal_solvers(): instances = [_get_knapsack_instance(internal_solver) for _ in range(10)] solver = LearningSolver(solver=internal_solver) results = solver.parallel_solve(instances, n_jobs=3) assert len(results) == 10 for instance in instances: data = instance.training_data[0] assert len(data["Solution"]["x"].keys()) == 4 def test_solve_fit_from_disk(): for internal_solver in _get_internal_solvers(): # Create instances and pickle them filenames = [] for k in range(3): instance = _get_knapsack_instance(internal_solver) with tempfile.NamedTemporaryFile(suffix=".pkl", delete=False) as file: filenames += [file.name] pickle.dump(instance, file) # Test: solve solver = LearningSolver(solver=internal_solver) solver.solve(filenames[0]) with open(filenames[0], "rb") as file: instance = pickle.load(file) assert len(instance.training_data) > 0 # Test: parallel_solve solver.parallel_solve(filenames) for filename in filenames: with open(filename, "rb") as file: instance = pickle.load(file) assert len(instance.training_data) > 0 # Test: solve (with specified output) output = [f + ".out" for f in filenames] solver.solve( filenames[0], output_filename=output[0], ) assert os.path.isfile(output[0]) # Test: parallel_solve (with specified output) solver.parallel_solve( filenames, output_filenames=output, ) for filename in output: assert os.path.isfile(filename) # Delete temporary files for filename in filenames: os.remove(filename) for filename in output: os.remove(filename) def test_simulate_perfect(): internal_solver = GurobiSolver instance = _get_knapsack_instance(internal_solver) with tempfile.NamedTemporaryFile(suffix=".pkl", delete=False) as tmp: pickle.dump(instance, tmp) tmp.flush() solver = LearningSolver( solver=internal_solver, simulate_perfect=True, ) stats = solver.solve(tmp.name) assert stats["Lower bound"] == stats["Predicted LB"] def test_gap(): assert LearningSolver._compute_gap(ub=0.0, lb=0.0) == 0.0 assert LearningSolver._compute_gap(ub=1.0, lb=0.5) == 0.5 assert LearningSolver._compute_gap(ub=1.0, lb=1.0) == 0.0 assert LearningSolver._compute_gap(ub=1.0, lb=-1.0) is None assert LearningSolver._compute_gap(ub=1.0, lb=None) is None assert LearningSolver._compute_gap(ub=None, lb=1.0) is None assert LearningSolver._compute_gap(ub=None, lb=None) is None