# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from typing import TypedDict, Optional, Dict, Callable, Any TrainingSample = TypedDict( "TrainingSample", { "LP log": Optional[str], "LP solution": Optional[Dict], "LP value": Optional[float], "Lower bound": Optional[float], "MIP log": Optional[str], "Solution": Optional[Dict], "Upper bound": Optional[float], }, total=False, ) LPSolveStats = TypedDict( "LPSolveStats", { "Optimal value": float, "Log": str, }, ) MIPSolveStats = TypedDict( "MIPSolveStats", { "Lower bound": Optional[float], "Upper bound": Optional[float], "Wallclock time": float, "Nodes": Optional[int], "Sense": str, "Log": str, "Warm start value": Optional[float], "LP value": Optional[float], }, ) IterationCallback = Callable[[], bool] LazyCallback = Callable[[Any, Any], None]