# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import logging import sys import numpy as np from copy import deepcopy from tqdm import tqdm from miplearn import Component from miplearn.classifiers.counting import CountingClassifier from miplearn.components import classifier_evaluation_dict from miplearn.components.composite import CompositeComponent from miplearn.components.lazy_static import LazyConstraint from miplearn.extractors import InstanceIterator logger = logging.getLogger(__name__) class RelaxationComponent(Component): """ A Component that tries to build a relaxation that is simultaneously strong and easy to solve. Currently, this component performs the following operations: - Drops all integrality constraints - Drops all inequality constraints that are not likely to be binding. In future versions of MIPLearn, this component may keep some integrality constraints and perform other operations. Parameters ---------- classifier : Classifier, optional Classifier used to predict whether each constraint is binding or not. One deep copy of this classifier is made for each constraint category. threshold : float, optional If the probability that a constraint is binding exceeds this threshold, the constraint is dropped from the linear relaxation. slack_tolerance : float, optional If a constraint has slack greater than this threshold, then the constraint is considered loose. By default, this threshold equals a small positive number to compensate for numerical issues. check_dropped : bool, optional If `check_dropped` is true, then, after the problem is solved, the component verifies that all dropped constraints are still satisfied, re-adds the violated ones and resolves the problem. This loop continues until either no violations are found, or a maximum number of iterations is reached. violation_tolerance : float, optional If `check_dropped` is true, a constraint is considered satisfied during the check if its violation is smaller than this tolerance. max_iterations : int If `check_dropped` is true, set the maximum number of iterations in the lazy constraint loop. """ def __init__( self, classifier=CountingClassifier(), threshold=0.95, slack_tolerance=1e-5, check_dropped=False, violation_tolerance=1e-5, max_iterations=3, ): self.steps = [ RelaxIntegralityStep(), DropRedundantInequalitiesStep( classifier=classifier, threshold=threshold, slack_tolerance=slack_tolerance, violation_tolerance=violation_tolerance, max_iterations=max_iterations, check_dropped=check_dropped, ), ] self.composite = CompositeComponent(self.steps) def before_solve(self, solver, instance, model): self.composite.before_solve(solver, instance, model) def after_solve(self, solver, instance, model, results): self.composite.after_solve(solver, instance, model, results) def fit(self, training_instances): self.composite.fit(training_instances) def iteration_cb(self, solver, instance, model): return self.composite.iteration_cb(solver, instance, model) class RelaxIntegralityStep(Component): def before_solve(self, solver, instance, _): logger.info("Relaxing integrality...") solver.internal_solver.relax() class DropRedundantInequalitiesStep(Component): def __init__( self, classifier=CountingClassifier(), threshold=0.95, slack_tolerance=1e-5, check_dropped=False, violation_tolerance=1e-5, max_iterations=3, ): self.classifiers = {} self.classifier_prototype = classifier self.threshold = threshold self.slack_tolerance = slack_tolerance self.pool = [] self.check_dropped = check_dropped self.violation_tolerance = violation_tolerance self.max_iterations = max_iterations self.current_iteration = 0 def before_solve(self, solver, instance, _): self.current_iteration = 0 logger.info("Predicting redundant LP constraints...") cids = solver.internal_solver.get_constraint_ids() x, constraints = self.x( [instance], constraint_ids=cids, return_constraints=True, ) y = self.predict(x) for category in y.keys(): for i in range(len(y[category])): if y[category][i][0] == 1: cid = constraints[category][i] c = LazyConstraint( cid=cid, obj=solver.internal_solver.extract_constraint(cid), ) self.pool += [c] logger.info("Extracted %d predicted constraints" % len(self.pool)) def after_solve(self, solver, instance, model, results): instance.slacks = solver.internal_solver.get_constraint_slacks() def fit(self, training_instances): logger.debug("Extracting x and y...") x = self.x(training_instances) y = self.y(training_instances) logger.debug("Fitting...") for category in tqdm(x.keys(), desc="Fit (rlx:drop_ineq)"): if category not in self.classifiers: self.classifiers[category] = deepcopy(self.classifier_prototype) self.classifiers[category].fit(x[category], y[category]) def x(self, instances, constraint_ids=None, return_constraints=False): x = {} constraints = {} for instance in tqdm( InstanceIterator(instances), desc="Extract (rlx:drop_ineq:x)", disable=len(instances) < 5, ): if constraint_ids is not None: cids = constraint_ids else: cids = instance.slacks.keys() for cid in cids: category = instance.get_constraint_category(cid) if category is None: continue if category not in x: x[category] = [] constraints[category] = [] x[category] += [instance.get_constraint_features(cid)] constraints[category] += [cid] if return_constraints: return x, constraints else: return x def y(self, instances): y = {} for instance in tqdm( InstanceIterator(instances), desc="Extract (rlx:drop_ineq:y)", disable=len(instances) < 5, ): for (cid, slack) in instance.slacks.items(): category = instance.get_constraint_category(cid) if category is None: continue if category not in y: y[category] = [] if slack > self.slack_tolerance: y[category] += [[1]] else: y[category] += [[0]] return y def predict(self, x): y = {} for (category, x_cat) in x.items(): if category not in self.classifiers: continue y[category] = [] # x_cat = np.array(x_cat) proba = self.classifiers[category].predict_proba(x_cat) for i in range(len(proba)): if proba[i][1] >= self.threshold: y[category] += [[1]] else: y[category] += [[0]] return y def evaluate(self, instance): x = self.x([instance]) y_true = self.y([instance]) y_pred = self.predict(x) tp, tn, fp, fn = 0, 0, 0, 0 for category in y_true.keys(): for i in range(len(y_true[category])): if y_pred[category][i][0] == 1: if y_true[category][i][0] == 1: tp += 1 else: fp += 1 else: if y_true[category][i][0] == 1: fn += 1 else: tn += 1 return classifier_evaluation_dict(tp, tn, fp, fn) def iteration_cb(self, solver, instance, model): if not self.check_dropped: return False if self.current_iteration >= self.max_iterations: return False self.current_iteration += 1 logger.debug("Checking that dropped constraints are satisfied...") constraints_to_add = [] for c in self.pool: if not solver.internal_solver.is_constraint_satisfied( c.obj, self.violation_tolerance, ): constraints_to_add.append(c) for c in constraints_to_add: self.pool.remove(c) solver.internal_solver.add_constraint(c.obj) if len(constraints_to_add) > 0: logger.info( "%8d constraints %8d in the pool" % (len(constraints_to_add), len(self.pool)) ) return True else: return False