# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved. # Written by Alinson S. Xavier from miplearn import BranchPriorityComponent, LearningSolver from miplearn.problems.knapsack import KnapsackInstance import numpy as np import tempfile def _get_instances(): return [ KnapsackInstance( weights=[23., 26., 20., 18.], prices=[505., 352., 458., 220.], capacity=67., ), ] * 2 def test_branching(): instances = _get_instances() component = BranchPriorityComponent() for instance in instances: component.after_solve(None, instance, None) component.fit(None) for key in ["default"]: assert key in component.x_train.keys() assert key in component.y_train.keys() assert component.x_train[key].shape == (8, 4) assert component.y_train[key].shape == (8, 1) def test_branch_priority_save_load(): state_file = tempfile.NamedTemporaryFile(mode="r") solver = LearningSolver(components={"branch-priority": BranchPriorityComponent()}) solver.parallel_solve(_get_instances(), n_jobs=2) solver.fit() comp = solver.components["branch-priority"] assert comp.x_train["default"].shape == (8, 4) assert comp.y_train["default"].shape == (8, 1) assert "default" in comp.predictors.keys() solver.save_state(state_file.name) solver = LearningSolver(components={"branch-priority": BranchPriorityComponent()}) solver.load_state(state_file.name) comp = solver.components["branch-priority"] assert comp.x_train["default"].shape == (8, 4) assert comp.y_train["default"].shape == (8, 1) assert "default" in comp.predictors.keys()