# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from typing import Any, List, Dict from unittest.mock import Mock from miplearn.components.cuts.mem import MemorizingCutsComponent from miplearn.extractors.abstract import FeaturesExtractor from miplearn.problems.stab import build_stab_model_gurobipy, build_stab_model_pyomo from miplearn.solvers.learning import LearningSolver from sklearn.dummy import DummyClassifier from sklearn.neighbors import KNeighborsClassifier from typing import Callable def test_mem_component_gp( stab_gp_h5: List[str], stab_pyo_h5: List[str], default_extractor: FeaturesExtractor, ) -> None: for h5 in [stab_pyo_h5, stab_gp_h5]: clf = Mock(wraps=DummyClassifier()) comp = MemorizingCutsComponent(clf=clf, extractor=default_extractor) comp.fit(h5) # Should call fit method with correct arguments clf.fit.assert_called() x, y = clf.fit.call_args.args assert x.shape == (3, 50) assert y.shape == (3, 412) y = y.tolist() assert y[0][40:50] == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] assert y[1][40:50] == [1, 1, 0, 1, 1, 1, 1, 1, 1, 1] assert y[2][40:50] == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # Should store violations assert comp.constrs_ is not None assert comp.n_features_ == 50 assert comp.n_targets_ == 412 assert len(comp.constrs_) == 412 # Call before-mip stats: Dict[str, Any] = {} model = Mock() comp.before_mip(h5[0], model, stats) # Should call predict with correct args clf.predict.assert_called() (x_test,) = clf.predict.call_args.args assert x_test.shape == (1, 50) # Should call set_cuts model.set_cuts.assert_called() (cuts_aot_,) = model.set_cuts.call_args.args assert cuts_aot_ is not None assert len(cuts_aot_) == 256 def test_usage_stab( stab_gp_h5: List[str], stab_pyo_h5: List[str], default_extractor: FeaturesExtractor, ) -> None: for (h5, build_model) in [ (stab_pyo_h5, build_stab_model_pyomo), (stab_gp_h5, build_stab_model_gurobipy), ]: data_filenames = [f.replace(".h5", ".pkl.gz") for f in h5] clf = KNeighborsClassifier(n_neighbors=1) comp = MemorizingCutsComponent(clf=clf, extractor=default_extractor) solver = LearningSolver(components=[comp]) solver.fit(data_filenames) stats = solver.optimize(data_filenames[0], build_model) # type: ignore assert stats["Cuts: AOT"] > 0