# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from dataclasses import dataclass from typing import List, Union import gurobipy as gp import numpy as np from gurobipy.gurobipy import GRB from scipy.stats import uniform, randint from scipy.stats.distributions import rv_frozen from .setcover import SetCoverGenerator from miplearn.solvers.gurobi import GurobiModel from ..io import read_pkl_gz @dataclass class SetPackData: costs: np.ndarray incidence_matrix: np.ndarray class SetPackGenerator: def __init__( self, n_elements: rv_frozen = randint(low=50, high=51), n_sets: rv_frozen = randint(low=100, high=101), costs: rv_frozen = uniform(loc=0.0, scale=100.0), costs_jitter: rv_frozen = uniform(loc=-5.0, scale=10.0), K: rv_frozen = uniform(loc=25.0, scale=0.0), density: rv_frozen = uniform(loc=0.02, scale=0.00), fix_sets: bool = True, ) -> None: self.gen = SetCoverGenerator( n_elements=n_elements, n_sets=n_sets, costs=costs, costs_jitter=costs_jitter, K=K, density=density, fix_sets=fix_sets, ) def generate(self, n_samples: int) -> List[SetPackData]: return [ SetPackData( s.costs, s.incidence_matrix, ) for s in self.gen.generate(n_samples) ] def build_setpack_model_gurobipy(data: Union[str, SetPackData]) -> GurobiModel: if isinstance(data, str): data = read_pkl_gz(data) assert isinstance(data, SetPackData) (n_elements, n_sets) = data.incidence_matrix.shape model = gp.Model() x = model.addMVar(n_sets, vtype=GRB.BINARY, name="x") model.addConstr(data.incidence_matrix @ x <= np.ones(n_elements)) model.setObjective(-data.costs @ x) model.update() return GurobiModel(model)