# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from numpy.linalg import norm from sklearn.svm import SVC from miplearn import AdaptiveClassifier, ScikitLearnClassifier from miplearn.classifiers.adaptive import CandidateClassifierSpecs from tests.classifiers import _build_circle_training_data def test_adaptive() -> None: clf = AdaptiveClassifier( candidates={ "linear": CandidateClassifierSpecs( classifier=ScikitLearnClassifier( SVC( probability=True, random_state=42, ) ) ), "poly": CandidateClassifierSpecs( classifier=ScikitLearnClassifier( SVC( probability=True, kernel="poly", degree=2, random_state=42, ) ) ), } ) x_train, y_train = _build_circle_training_data() clf.fit(x_train, y_train) proba = clf.predict_proba(x_train) y_pred = (proba[:, 1] > 0.5).astype(float) assert norm(y_train[:, 1] - y_pred) < 0.1