# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved. # Written by Alinson S. Xavier from miplearn.problems.knapsack import KnapsackInstance from miplearn.extractors import (UserFeaturesExtractor, SolutionExtractor, CombinedExtractor, ) import numpy as np import pyomo.environ as pe def _get_instances(): return [ KnapsackInstance(weights=[1., 2., 3.], prices=[10., 20., 30.], capacity=2.5, ), KnapsackInstance(weights=[3., 4., 5.], prices=[20., 30., 40.], capacity=4.5, ), ] def test_user_features(): instances = _get_instances() extractor = UserFeaturesExtractor() features = extractor.extract(instances) assert isinstance(features, dict) assert "default" in features.keys() assert isinstance(features["default"], np.ndarray) assert features["default"].shape == (6, 4) def test_solution_extractor(): instances = _get_instances() models = [instance.to_model() for instance in instances] for model in models: solver = pe.SolverFactory("cbc") solver.solve(model) extractor = SolutionExtractor() features = extractor.extract(instances, models) assert isinstance(features, dict) assert "default" in features.keys() assert isinstance(features["default"], np.ndarray) assert features["default"].shape == (6, 2) assert features["default"].ravel().tolist() == [ 1., 0., 0., 1., 1., 0., 1., 0., 0., 1., 1., 0., ] def test_combined_extractor(): instances = _get_instances() models = [instance.to_model() for instance in instances] extractor = CombinedExtractor(extractors=[UserFeaturesExtractor(), SolutionExtractor()]) features = extractor.extract(instances, models) assert isinstance(features, dict) assert "default" in features.keys() assert isinstance(features["default"], np.ndarray) assert features["default"].shape == (6, 6)