# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from typing import Any from overrides import overrides from pyomo import environ as pe from miplearn.instance.base import Instance from miplearn.solvers.gurobi import GurobiSolver from miplearn.solvers.pyomo.base import BasePyomoSolver from tests.solvers import _is_subclass_or_instance class InfeasiblePyomoInstance(Instance): @overrides def to_model(self) -> pe.ConcreteModel: model = pe.ConcreteModel() model.x = pe.Var([0], domain=pe.Binary) model.OBJ = pe.Objective(expr=model.x[0], sense=pe.maximize) model.eq = pe.Constraint(expr=model.x[0] >= 2) return model class InfeasibleGurobiInstance(Instance): @overrides def to_model(self) -> Any: import gurobipy as gp from gurobipy import GRB model = gp.Model() x = model.addVars(1, vtype=GRB.BINARY, name="x") model.addConstr(x[0] >= 2) model.setObjective(x[0]) return model def get_infeasible_instance(solver: Any) -> Instance: if _is_subclass_or_instance(solver, BasePyomoSolver): return InfeasiblePyomoInstance() if _is_subclass_or_instance(solver, GurobiSolver): return InfeasibleGurobiInstance() assert False