# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from miplearn import LearningSolver, BenchmarkRunner from miplearn.problems.stab import MaxWeightStableSetGenerator from scipy.stats import randint import numpy as np import pyomo.environ as pe import os.path def test_benchmark(): # Generate training and test instances train_instances = MaxWeightStableSetGenerator(n=randint(low=25, high=26)).generate(5) test_instances = MaxWeightStableSetGenerator(n=randint(low=25, high=26)).generate(3) # Training phase... training_solver = LearningSolver() training_solver.parallel_solve(train_instances, n_jobs=10) # Test phase... test_solvers = { "Strategy A": LearningSolver(), "Strategy B": LearningSolver(), } benchmark = BenchmarkRunner(test_solvers) benchmark.fit(train_instances) benchmark.parallel_solve(test_instances, n_jobs=2, n_trials=2) assert benchmark.raw_results().values.shape == (12,16) benchmark.save_results("/tmp/benchmark.csv") assert os.path.isfile("/tmp/benchmark.csv") benchmark = BenchmarkRunner(test_solvers) benchmark.load_results("/tmp/benchmark.csv") assert benchmark.raw_results().values.shape == (12,16)