# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import gc import gzip import os import pickle from typing import Optional, Any, List, cast, IO, TYPE_CHECKING, Dict, Callable import numpy as np from overrides import overrides from miplearn.features.sample import Sample from miplearn.instance.base import Instance from miplearn.types import ConstraintName from tqdm.auto import tqdm from p_tqdm import p_umap if TYPE_CHECKING: from miplearn.solvers.learning import InternalSolver class PickleGzInstance(Instance): """ An instance backed by a gzipped pickle file. The instance is only loaded to memory after an operation is called (for example, `to_model`). Parameters ---------- filename: str Path of the gzipped pickle file that should be loaded. """ # noinspection PyMissingConstructor def __init__(self, filename: str) -> None: assert os.path.exists(filename), f"File not found: {filename}" self.instance: Optional[Instance] = None self.filename: str = filename @overrides def to_model(self) -> Any: assert self.instance is not None return self.instance.to_model() @overrides def get_instance_features(self) -> np.ndarray: assert self.instance is not None return self.instance.get_instance_features() @overrides def get_variable_features(self, names: np.ndarray) -> np.ndarray: assert self.instance is not None return self.instance.get_variable_features(names) @overrides def get_variable_categories(self, names: np.ndarray) -> np.ndarray: assert self.instance is not None return self.instance.get_variable_categories(names) @overrides def get_constraint_features(self, names: np.ndarray) -> np.ndarray: assert self.instance is not None return self.instance.get_constraint_features(names) @overrides def get_constraint_categories(self, names: np.ndarray) -> np.ndarray: assert self.instance is not None return self.instance.get_constraint_categories(names) @overrides def has_dynamic_lazy_constraints(self) -> bool: assert self.instance is not None return self.instance.has_dynamic_lazy_constraints() @overrides def are_constraints_lazy(self, names: np.ndarray) -> np.ndarray: assert self.instance is not None return self.instance.are_constraints_lazy(names) @overrides def find_violated_lazy_constraints( self, solver: "InternalSolver", model: Any, ) -> Dict[ConstraintName, Any]: assert self.instance is not None return self.instance.find_violated_lazy_constraints(solver, model) @overrides def enforce_lazy_constraint( self, solver: "InternalSolver", model: Any, violation_data: Any, ) -> None: assert self.instance is not None self.instance.enforce_lazy_constraint(solver, model, violation_data) @overrides def find_violated_user_cuts(self, model: Any) -> Dict[ConstraintName, Any]: assert self.instance is not None return self.instance.find_violated_user_cuts(model) @overrides def enforce_user_cut( self, solver: "InternalSolver", model: Any, violation_name: Any, ) -> None: assert self.instance is not None self.instance.enforce_user_cut(solver, model, violation_name) @overrides def load(self) -> None: if self.instance is None: obj = read_pickle_gz(self.filename) assert isinstance(obj, Instance) self.instance = obj @overrides def free(self) -> None: self.instance = None # type: ignore gc.collect() @overrides def flush(self) -> None: write_pickle_gz(self.instance, self.filename) @overrides def get_samples(self) -> List[Sample]: assert self.instance is not None return self.instance.get_samples() @overrides def create_sample(self) -> Sample: assert self.instance is not None return self.instance.create_sample() def write_pickle_gz(obj: Any, filename: str) -> None: os.makedirs(os.path.dirname(filename), exist_ok=True) with gzip.GzipFile(filename, "wb") as file: pickle.dump(obj, cast(IO[bytes], file)) def read_pickle_gz(filename: str) -> Any: with gzip.GzipFile(filename, "rb") as file: return pickle.load(cast(IO[bytes], file)) def write_pickle_gz_multiple(objs: List[Any], dirname: str) -> None: for (i, obj) in enumerate(objs): write_pickle_gz(obj, f"{dirname}/{i:05d}.pkl.gz") def save( objs: List[Any], dirname: str, progress: bool = False, n_jobs: int = 1, ) -> List[str]: """ Saves the provided objects to gzipped pickled files. Files are named sequentially as `dirname/00000.pkl.gz`, `dirname/00001.pkl.gz`, etc. Parameters ---------- progress: bool If True, show progress bar objs: List[any] List of files to save dirname: str Output directory Returns ------- List containing the relative paths of the saved files. """ def _process(obj, filename): write_pickle_gz(obj, filename) filenames = [f"{dirname}/{i:05d}.pkl.gz" for i in range(len(objs))] p_umap(_process, objs, filenames, num_cpus=n_jobs) return filenames def load(filename: str, build_model: Callable) -> Any: with gzip.GzipFile(filename, "rb") as file: data = pickle.load(cast(IO[bytes], file)) return build_model(data)