# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from miplearn import LearningSolver, BranchPriorityComponent from miplearn.problems.knapsack import KnapsackInstance def _get_instance(): return KnapsackInstance( weights=[23., 26., 20., 18.], prices=[505., 352., 458., 220.], capacity=67., ) def test_solver(): instance = _get_instance() for mode in ["exact", "heuristic"]: for internal_solver in ["cplex", "gurobi"]: solver = LearningSolver(time_limit=300, gap_tolerance=1e-3, threads=1, solver=internal_solver, mode=mode, ) results = solver.solve(instance) assert instance.solution["x"][0] == 1.0 assert instance.solution["x"][1] == 0.0 assert instance.solution["x"][2] == 1.0 assert instance.solution["x"][3] == 1.0 assert instance.lower_bound == 1183.0 assert instance.upper_bound == 1183.0 assert round(instance.lp_solution["x"][0], 3) == 1.000 assert round(instance.lp_solution["x"][1], 3) == 0.923 assert round(instance.lp_solution["x"][2], 3) == 1.000 assert round(instance.lp_solution["x"][3], 3) == 0.000 assert round(instance.lp_value, 3) == 1287.923 solver.fit() solver.solve(instance) def test_parallel_solve(): instances = [_get_instance() for _ in range(10)] solver = LearningSolver() results = solver.parallel_solve(instances, n_jobs=3) assert len(results) == 10 for instance in instances: assert len(instance.solution["x"].keys()) == 4