# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from typing import Tuple import numpy as np from miplearn.h5 import H5File def _extract_bin_var_names_values( h5: H5File, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: bin_var_names, bin_var_indices = _extract_bin_var_names(h5) var_values = h5.get_array("mip_var_values") assert var_values is not None bin_var_values = var_values[bin_var_indices].astype(int) return bin_var_names, bin_var_values, bin_var_indices def _extract_bin_var_names(h5: H5File) -> Tuple[np.ndarray, np.ndarray]: var_types = h5.get_array("static_var_types") var_names = h5.get_array("static_var_names") assert var_types is not None assert var_names is not None bin_var_indices = np.where(var_types == b"B")[0] bin_var_names = var_names[bin_var_indices] assert len(bin_var_names.shape) == 1 return bin_var_names, bin_var_indices