Module miplearn.components.steps.tests.test_drop_redundant
Expand source code
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from unittest.mock import Mock, call
import numpy as np
from miplearn.classifiers import Classifier
from miplearn.components.relaxation import DropRedundantInequalitiesStep
from miplearn.instance import Instance
from miplearn.solvers.internal import InternalSolver
from miplearn.solvers.learning import LearningSolver
def _setup():
solver = Mock(spec=LearningSolver)
internal = solver.internal_solver = Mock(spec=InternalSolver)
internal.get_constraint_ids = Mock(return_value=["c1", "c2", "c3", "c4"])
internal.get_inequality_slacks = Mock(
side_effect=lambda: {
"c1": 0.5,
"c2": 0.0,
"c3": 0.0,
"c4": 1.4,
}
)
internal.extract_constraint = Mock(side_effect=lambda cid: "<%s>" % cid)
internal.is_constraint_satisfied = Mock(return_value=False)
instance = Mock(spec=Instance)
instance.get_constraint_features = Mock(
side_effect=lambda cid: {
"c2": np.array([1.0, 0.0]),
"c3": np.array([0.5, 0.5]),
"c4": np.array([1.0]),
}[cid]
)
instance.get_constraint_category = Mock(
side_effect=lambda cid: {
"c1": None,
"c2": "type-a",
"c3": "type-a",
"c4": "type-b",
}[cid]
)
classifiers = {
"type-a": Mock(spec=Classifier),
"type-b": Mock(spec=Classifier),
}
classifiers["type-a"].predict_proba = Mock(
return_value=np.array(
[
[0.20, 0.80],
[0.05, 0.95],
]
)
)
classifiers["type-b"].predict_proba = Mock(
return_value=np.array(
[
[0.02, 0.98],
]
)
)
return solver, internal, instance, classifiers
def test_drop_redundant():
solver, internal, instance, classifiers = _setup()
component = DropRedundantInequalitiesStep()
component.classifiers = classifiers
# LearningSolver calls before_solve
component.before_solve(solver, instance, None)
# Should query list of constraints
internal.get_constraint_ids.assert_called_once()
# Should query category and features for each constraint in the model
assert instance.get_constraint_category.call_count == 4
instance.get_constraint_category.assert_has_calls(
[
call("c1"),
call("c2"),
call("c3"),
call("c4"),
]
)
# For constraint with non-null categories, should ask for features
assert instance.get_constraint_features.call_count == 3
instance.get_constraint_features.assert_has_calls(
[
call("c2"),
call("c3"),
call("c4"),
]
)
# Should ask ML to predict whether constraint should be removed
type_a_actual = component.classifiers["type-a"].predict_proba.call_args[0][0]
type_b_actual = component.classifiers["type-b"].predict_proba.call_args[0][0]
np.testing.assert_array_equal(type_a_actual, np.array([[1.0, 0.0], [0.5, 0.5]]))
np.testing.assert_array_equal(type_b_actual, np.array([[1.0]]))
# Should ask internal solver to remove constraints predicted as redundant
assert internal.extract_constraint.call_count == 2
internal.extract_constraint.assert_has_calls(
[
call("c3"),
call("c4"),
]
)
# LearningSolver calls after_solve
training_data = {}
component.after_solve(solver, instance, None, {}, training_data)
# Should query slack for all inequalities
internal.get_inequality_slacks.assert_called_once()
# Should store constraint slacks in instance object
assert training_data["slacks"] == {
"c1": 0.5,
"c2": 0.0,
"c3": 0.0,
"c4": 1.4,
}
def test_drop_redundant_with_check_feasibility():
solver, internal, instance, classifiers = _setup()
component = DropRedundantInequalitiesStep(
check_feasibility=True,
violation_tolerance=1e-3,
)
component.classifiers = classifiers
# LearningSolver call before_solve
component.before_solve(solver, instance, None)
# Assert constraints are extracted
assert internal.extract_constraint.call_count == 2
internal.extract_constraint.assert_has_calls(
[
call("c3"),
call("c4"),
]
)
# LearningSolver calls iteration_cb (first time)
should_repeat = component.iteration_cb(solver, instance, None)
# Should ask LearningSolver to repeat
assert should_repeat
# Should ask solver if removed constraints are satisfied (mock always returns false)
internal.is_constraint_satisfied.assert_has_calls(
[
call("<c3>", 1e-3),
call("<c4>", 1e-3),
]
)
# Should add constraints back to LP relaxation
internal.add_constraint.assert_has_calls([call("<c3>"), call("<c4>")])
# LearningSolver calls iteration_cb (second time)
should_repeat = component.iteration_cb(solver, instance, None)
assert not should_repeat
def test_x_y_fit_predict_evaluate():
instances = [Mock(spec=Instance), Mock(spec=Instance)]
component = DropRedundantInequalitiesStep(slack_tolerance=0.05, threshold=0.80)
component.classifiers = {
"type-a": Mock(spec=Classifier),
"type-b": Mock(spec=Classifier),
}
component.classifiers["type-a"].predict_proba = Mock(
return_value=[
np.array([0.20, 0.80]),
]
)
component.classifiers["type-b"].predict_proba = Mock(
return_value=np.array(
[
[0.50, 0.50],
[0.05, 0.95],
]
)
)
# First mock instance
instances[0].training_data = [
{
"slacks": {
"c1": 0.00,
"c2": 0.05,
"c3": 0.00,
"c4": 30.0,
}
}
]
instances[0].get_constraint_category = Mock(
side_effect=lambda cid: {
"c1": None,
"c2": "type-a",
"c3": "type-a",
"c4": "type-b",
}[cid]
)
instances[0].get_constraint_features = Mock(
side_effect=lambda cid: {
"c2": np.array([1.0, 0.0]),
"c3": np.array([0.5, 0.5]),
"c4": np.array([1.0]),
}[cid]
)
# Second mock instance
instances[1].training_data = [
{
"slacks": {
"c1": 0.00,
"c3": 0.30,
"c4": 0.00,
"c5": 0.00,
}
}
]
instances[1].get_constraint_category = Mock(
side_effect=lambda cid: {
"c1": None,
"c3": "type-a",
"c4": "type-b",
"c5": "type-b",
}[cid]
)
instances[1].get_constraint_features = Mock(
side_effect=lambda cid: {
"c3": np.array([0.3, 0.4]),
"c4": np.array([0.7]),
"c5": np.array([0.8]),
}[cid]
)
expected_x = {
"type-a": np.array(
[
[1.0, 0.0],
[0.5, 0.5],
[0.3, 0.4],
]
),
"type-b": np.array(
[
[1.0],
[0.7],
[0.8],
]
),
}
expected_y = {
"type-a": np.array([[0], [0], [1]]),
"type-b": np.array([[1], [0], [0]]),
}
# Should build X and Y matrices correctly
actual_x = component.x(instances)
actual_y = component.y(instances)
for category in ["type-a", "type-b"]:
np.testing.assert_array_equal(actual_x[category], expected_x[category])
np.testing.assert_array_equal(actual_y[category], expected_y[category])
# Should pass along X and Y matrices to classifiers
component.fit(instances)
for category in ["type-a", "type-b"]:
actual_x = component.classifiers[category].fit.call_args[0][0]
actual_y = component.classifiers[category].fit.call_args[0][1]
np.testing.assert_array_equal(actual_x, expected_x[category])
np.testing.assert_array_equal(actual_y, expected_y[category])
assert component.predict(expected_x) == {"type-a": [[1]], "type-b": [[0], [1]]}
ev = component.evaluate(instances[1])
assert ev["True positive"] == 1
assert ev["True negative"] == 1
assert ev["False positive"] == 1
assert ev["False negative"] == 0
def test_x_multiple_solves():
instance = Mock(spec=Instance)
instance.training_data = [
{
"slacks": {
"c1": 0.00,
"c2": 0.05,
"c3": 0.00,
"c4": 30.0,
}
},
{
"slacks": {
"c1": 0.00,
"c2": 0.00,
"c3": 1.00,
"c4": 0.0,
}
},
]
instance.get_constraint_category = Mock(
side_effect=lambda cid: {
"c1": None,
"c2": "type-a",
"c3": "type-a",
"c4": "type-b",
}[cid]
)
instance.get_constraint_features = Mock(
side_effect=lambda cid: {
"c2": np.array([1.0, 0.0]),
"c3": np.array([0.5, 0.5]),
"c4": np.array([1.0]),
}[cid]
)
expected_x = {
"type-a": np.array(
[
[1.0, 0.0],
[0.5, 0.5],
[1.0, 0.0],
[0.5, 0.5],
]
),
"type-b": np.array(
[
[1.0],
[1.0],
]
),
}
expected_y = {
"type-a": np.array([[1], [0], [0], [1]]),
"type-b": np.array([[1], [0]]),
}
# Should build X and Y matrices correctly
component = DropRedundantInequalitiesStep()
actual_x = component.x([instance])
actual_y = component.y([instance])
print(actual_x)
for category in ["type-a", "type-b"]:
np.testing.assert_array_equal(actual_x[category], expected_x[category])
np.testing.assert_array_equal(actual_y[category], expected_y[category])
Functions
def test_drop_redundant()
-
Expand source code
def test_drop_redundant(): solver, internal, instance, classifiers = _setup() component = DropRedundantInequalitiesStep() component.classifiers = classifiers # LearningSolver calls before_solve component.before_solve(solver, instance, None) # Should query list of constraints internal.get_constraint_ids.assert_called_once() # Should query category and features for each constraint in the model assert instance.get_constraint_category.call_count == 4 instance.get_constraint_category.assert_has_calls( [ call("c1"), call("c2"), call("c3"), call("c4"), ] ) # For constraint with non-null categories, should ask for features assert instance.get_constraint_features.call_count == 3 instance.get_constraint_features.assert_has_calls( [ call("c2"), call("c3"), call("c4"), ] ) # Should ask ML to predict whether constraint should be removed type_a_actual = component.classifiers["type-a"].predict_proba.call_args[0][0] type_b_actual = component.classifiers["type-b"].predict_proba.call_args[0][0] np.testing.assert_array_equal(type_a_actual, np.array([[1.0, 0.0], [0.5, 0.5]])) np.testing.assert_array_equal(type_b_actual, np.array([[1.0]])) # Should ask internal solver to remove constraints predicted as redundant assert internal.extract_constraint.call_count == 2 internal.extract_constraint.assert_has_calls( [ call("c3"), call("c4"), ] ) # LearningSolver calls after_solve training_data = {} component.after_solve(solver, instance, None, {}, training_data) # Should query slack for all inequalities internal.get_inequality_slacks.assert_called_once() # Should store constraint slacks in instance object assert training_data["slacks"] == { "c1": 0.5, "c2": 0.0, "c3": 0.0, "c4": 1.4, }
def test_drop_redundant_with_check_feasibility()
-
Expand source code
def test_drop_redundant_with_check_feasibility(): solver, internal, instance, classifiers = _setup() component = DropRedundantInequalitiesStep( check_feasibility=True, violation_tolerance=1e-3, ) component.classifiers = classifiers # LearningSolver call before_solve component.before_solve(solver, instance, None) # Assert constraints are extracted assert internal.extract_constraint.call_count == 2 internal.extract_constraint.assert_has_calls( [ call("c3"), call("c4"), ] ) # LearningSolver calls iteration_cb (first time) should_repeat = component.iteration_cb(solver, instance, None) # Should ask LearningSolver to repeat assert should_repeat # Should ask solver if removed constraints are satisfied (mock always returns false) internal.is_constraint_satisfied.assert_has_calls( [ call("<c3>", 1e-3), call("<c4>", 1e-3), ] ) # Should add constraints back to LP relaxation internal.add_constraint.assert_has_calls([call("<c3>"), call("<c4>")]) # LearningSolver calls iteration_cb (second time) should_repeat = component.iteration_cb(solver, instance, None) assert not should_repeat
def test_x_multiple_solves()
-
Expand source code
def test_x_multiple_solves(): instance = Mock(spec=Instance) instance.training_data = [ { "slacks": { "c1": 0.00, "c2": 0.05, "c3": 0.00, "c4": 30.0, } }, { "slacks": { "c1": 0.00, "c2": 0.00, "c3": 1.00, "c4": 0.0, } }, ] instance.get_constraint_category = Mock( side_effect=lambda cid: { "c1": None, "c2": "type-a", "c3": "type-a", "c4": "type-b", }[cid] ) instance.get_constraint_features = Mock( side_effect=lambda cid: { "c2": np.array([1.0, 0.0]), "c3": np.array([0.5, 0.5]), "c4": np.array([1.0]), }[cid] ) expected_x = { "type-a": np.array( [ [1.0, 0.0], [0.5, 0.5], [1.0, 0.0], [0.5, 0.5], ] ), "type-b": np.array( [ [1.0], [1.0], ] ), } expected_y = { "type-a": np.array([[1], [0], [0], [1]]), "type-b": np.array([[1], [0]]), } # Should build X and Y matrices correctly component = DropRedundantInequalitiesStep() actual_x = component.x([instance]) actual_y = component.y([instance]) print(actual_x) for category in ["type-a", "type-b"]: np.testing.assert_array_equal(actual_x[category], expected_x[category]) np.testing.assert_array_equal(actual_y[category], expected_y[category])
def test_x_y_fit_predict_evaluate()
-
Expand source code
def test_x_y_fit_predict_evaluate(): instances = [Mock(spec=Instance), Mock(spec=Instance)] component = DropRedundantInequalitiesStep(slack_tolerance=0.05, threshold=0.80) component.classifiers = { "type-a": Mock(spec=Classifier), "type-b": Mock(spec=Classifier), } component.classifiers["type-a"].predict_proba = Mock( return_value=[ np.array([0.20, 0.80]), ] ) component.classifiers["type-b"].predict_proba = Mock( return_value=np.array( [ [0.50, 0.50], [0.05, 0.95], ] ) ) # First mock instance instances[0].training_data = [ { "slacks": { "c1": 0.00, "c2": 0.05, "c3": 0.00, "c4": 30.0, } } ] instances[0].get_constraint_category = Mock( side_effect=lambda cid: { "c1": None, "c2": "type-a", "c3": "type-a", "c4": "type-b", }[cid] ) instances[0].get_constraint_features = Mock( side_effect=lambda cid: { "c2": np.array([1.0, 0.0]), "c3": np.array([0.5, 0.5]), "c4": np.array([1.0]), }[cid] ) # Second mock instance instances[1].training_data = [ { "slacks": { "c1": 0.00, "c3": 0.30, "c4": 0.00, "c5": 0.00, } } ] instances[1].get_constraint_category = Mock( side_effect=lambda cid: { "c1": None, "c3": "type-a", "c4": "type-b", "c5": "type-b", }[cid] ) instances[1].get_constraint_features = Mock( side_effect=lambda cid: { "c3": np.array([0.3, 0.4]), "c4": np.array([0.7]), "c5": np.array([0.8]), }[cid] ) expected_x = { "type-a": np.array( [ [1.0, 0.0], [0.5, 0.5], [0.3, 0.4], ] ), "type-b": np.array( [ [1.0], [0.7], [0.8], ] ), } expected_y = { "type-a": np.array([[0], [0], [1]]), "type-b": np.array([[1], [0], [0]]), } # Should build X and Y matrices correctly actual_x = component.x(instances) actual_y = component.y(instances) for category in ["type-a", "type-b"]: np.testing.assert_array_equal(actual_x[category], expected_x[category]) np.testing.assert_array_equal(actual_y[category], expected_y[category]) # Should pass along X and Y matrices to classifiers component.fit(instances) for category in ["type-a", "type-b"]: actual_x = component.classifiers[category].fit.call_args[0][0] actual_y = component.classifiers[category].fit.call_args[0][1] np.testing.assert_array_equal(actual_x, expected_x[category]) np.testing.assert_array_equal(actual_y, expected_y[category]) assert component.predict(expected_x) == {"type-a": [[1]], "type-b": [[0], [1]]} ev = component.evaluate(instances[1]) assert ev["True positive"] == 1 assert ev["True negative"] == 1 assert ev["False positive"] == 1 assert ev["False negative"] == 0